精英家教网 > 高中数学 > 题目详情
18.以(1,-1)为中点的抛物线y2=8x的弦所在直线的方程存在吗?若存在,求出直线方程;若不存在,请说明理由.

分析 先设出弦的两端点的坐标然后代入到抛物线方程后两式相减,可求得直线方程的斜率,最后根据直线的点斜式可求得方程.

解答 解:设这样的直线存在,其被抛物线截得弦的两端点分别为A(x1,y1),B(x2,y2),
则yi2=8x1,y22=8x2  ①…(2分)
①中两式做差,得(y2+y1)(y2-y1)=8(x2-x1),
∴kAB=-4.…(12分)
得直线方程 y+1=-4(x-1),即4x+y-3=0.②…(14分)
将②与曲线y2=8x联立,
得16x2-32x+9=0,△=(-32)2-4×16×9>0(必须检验!) …(15分)
∴弦所在直线方程为4x+y-3=0.…(16分)

点评 本题主要考查直线和抛物线的综合问题,考查综合运用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.一个由半圆锥和平放的直三棱柱(侧棱垂直于底面的三棱柱)组成的几何体,其三视图如图所示,则该几何体的体积为(  )
A.1+$\frac{π}{3}$B.1+$\frac{π}{6}$C.$\frac{2}{3}$+$\frac{π}{3}$D.$\frac{2}{3}$+$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:已知角α终边上的一点P(7m,-3m)(m≠0).
(Ⅰ)求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值;
(Ⅱ)求2+sinαcosα-cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)={x^2}+\frac{1}{x+1},x∈[0,1]$.
(1)证明:$f(x)≥{x^2}-\frac{4}{9}x+\frac{8}{9}$;
(2)证明:$\frac{68}{81}<f(x)≤\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列选项中,说法正确的是(  )
A.若命题“p或q”为真命题,则命题p和命题q均为真命题
B.命题“若am2<bm2,则a<b”的逆命题是真命题
C.命题“若a=-b,则|a|=|b|”的否命题是真命题
D.命题“若$\left\{{\overrightarrow a,\overrightarrow b,\overrightarrow c}\right\}$为空间的一个基底,则$\left\{{\overrightarrow a+\overrightarrow b,\overrightarrow b+\overrightarrow c,\overrightarrow c+\overrightarrow a}\right\}$构成空间的另一个基底”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2x2-lnx的递增区间是(  )
A.$(0,\frac{1}{2})$B.$(-\frac{1}{2},0)$和$(\frac{1}{2},+∞)$C.$(\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2})$和$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.经过点A(-1,4)且在x轴上的截距为3的直线方程是(  )
A.x+y+3=0B.x-y+3=0C.x+y-3=0D.x-y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x+a,g(x)=x+$\frac{4}{x}$,若?x1∈[1,3],?x2∈[1,4],使得f(x1)≥g(x2),则实数a的取值范围为(  )
A.a≥1B.a≥2C.a≥3D.a≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3-3x2,g(x)=ax2-4.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若对任意的x∈[0,+∞),都有f(x)≥g(x),求实数a的取值范围;
(Ⅲ)函数f(x)的图象是否为中心对称图形,如果是,请写出对称中心;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案