精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (0<x<π),g(x)=(x﹣1)lnx+m(m∈R)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:1是g(x)的唯一极小值点;
(Ⅲ)若存在a,b∈(0,π),满足f(a)=g(b),求m的取值范围.(只需写出结论)

【答案】解:(Ⅰ)因为 =

令f'(x)=0,得

因为0<x<π,所以

当x变化时,f'(x),f(x)的变化情况如下:

x

f'(x)

+

0

f(x)

极大值

故f(x)的单调递增区间为 ,f(x)的单调递减区间为

(Ⅱ)证明:∵g(x)=(x﹣1)lnx+m∴ (x>0),

,则

故g'(x)在(0,+∞)是单调递增函数,

又∵g'(1)=0,故方程g'(x)=0只有唯一实根x=1

当x变化时,g'(x),g(x)的变化情况如下:

x

(0,1)

1

(1,+∞)

g'(x)

0

+

g(x)

极小值

故g(x)在x=1时取得极小值g(1)=m,即1是g(x)的唯一极小值点.

(Ⅲ)


【解析】(Ⅰ)根据f(x)0时f(x)单调递增,f(x)0时f(x)单调递减可求出f(x)的单调区间;(Ⅱ)构造函数h(x)=g(x),导论h(x)的单调性并求出h(x)的零点;(Ⅲ)使g(x)minf(x)max即可.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值与导数的理解,了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.据此估计,该运动员三次投篮恰有一次命中的概率为(
A.0.25
B.0.2
C.0.35
D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A′B′C′D′中, .设点F在线段CC'上,直线EF与平面A'BD所成的角为α,则sinα的取值范围是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,f′(x)为函数f(x)的导函数.

(1)若F(x)=f(x)+b,函数F(x)在x=1处的切线方程为2x+y﹣1=0,求a,b的值;
(2)若f′(x)≤﹣x+ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等比数列,满足a2=6,a3=﹣18,数列{bn}满足b1=2,且{2bn+an}是公差为2的等差数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1﹣2an , 证明数列{bn}是等比数列(要指出首项、公比);
(2)若cn=nbn , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在R上是增函数,则下列说法正确的是( )
A.y=﹣f(x)在R上是减函数
B.y= 在R上是减函数
C.y=[f(x)]2在R上是增函数
D.y=af(x)(a为实数)在R上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列各组函数是否为相等函数:
⑴f(x)=f(x)= ,g(x)=x﹣5;
⑵f(x)=2x+1(x∈Z),g(x)=2x+1(x∈R);
⑶f(x)=|x+1|,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣2tx+2,g(x)=ex﹣1+e﹣x+1 , 且函数f(x)的图象关于直线x=1对称.
(1)求函数f(x)在区间[0,4]上最大值;
(2)设 ,不等式h(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;
(3)设F(x)=f(x)+ag(x)﹣2有唯一零点,求实数a的值.

查看答案和解析>>

同步练习册答案