精英家教网 > 高中数学 > 题目详情
6.已知直三棱柱A1B1C1-ABC的三视图如图所示,D,E分别是棱CC1和棱B1C1的中点,则三棱锥E-ABD的体积为(  )
A.$\frac{3\sqrt{3}}{4}$B.$\frac{2\sqrt{3}}{3}$C.3D.1

分析 根据三视图可求得三棱柱的各棱长,且AC⊥平面B1C1CB,于是V棱锥E-ABD=V棱锥A-BDE=$\frac{1}{3}$S△BDE•AC.

解答 解:由三视图可知∠ACC1=∠BCC1=∠ACB=90°,AC=BC=C1C=2,∴AC⊥平面B1C1CB,连结AE,BE,DE,AD,
∴S△BDE=22-$\frac{1}{2}×1×1$$-\frac{1}{2}×1×2$$-\frac{1}{2}×1×2$=$\frac{3}{2}$.
∴V棱锥E-ABD=V棱锥A-BDE=$\frac{1}{3}$S△BDE•AC=$\frac{1}{3}×\frac{3}{2}×2$=1.
故选:D.

点评 本题考查了棱柱的三视图及体积计算,选择恰当的底面是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|log2(x2-3x+3)=0},B={x|mx-3=0},且A∩B=B,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.平面内动点P(x,y)与两定点A(-2,0),b(2,0)连线的斜率之积等于-$\frac{1}{3}$,若点P的轨迹为曲线E,过点Q(-1,0)作斜率不为零的直线CD交曲线E于点C,D
(1)求曲线E的方程;
(2)求证:AC⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若y=x2+(log2N)x+log2N的最小值为$\frac{3}{4}$,求N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f(x)=1ogax,g(x)=1ogbx,其中正数a,b互不相等且满足a(1-b2)+b(1-a2)=0和f(2)-g(2)=2.
(1)求a,b的值;
(2)记F(x)=f($\sqrt{{x}^{2}-2}$)-g($\sqrt{{x}^{2}-2}$),若函数y=F(x)在区间[m,n]上的值域为[1,1og214],求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{(2-[x])•|x-1|,0≤x<2}\\{1,x=2}\end{array}\right.$,其中[x]表示不超过x的最大整数,如,[-3•5]=-4,[1•2]=1,设n∈N*,定义函数fn(x)为:f1(x)=f(x),且fn(x)=f[fn-1(x)](n≥2),有以下说法:
①函数y=$\sqrt{x-f(x)}$的定义域为{x|$\frac{2}{3}$≤x≤2};
②设集合A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;
③f2015($\frac{8}{9}$)+f2016($\frac{8}{9}$)=$\frac{13}{9}$;
④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少包含有8个元素.
其中说法正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.己知三棱椎O一ABC,它的底面边长和侧棱长除OC外都是1,并且侧面OAB与底面ABC所成的角为a.
(1)求侧棱OC的长(表示为a的函数);
(2)问a=30°时,三棱锥的体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是(  )
A.{x|2<x<3}B.{x|-1<x≤0}C.{x|0≤x<6}D.{x|x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求:函数f(x)=$\frac{\sqrt{2x-1}}{x-3}$的定义域.

查看答案和解析>>

同步练习册答案