精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线过点,且P到抛物线焦点的距离为2直线过点,且与抛物线相交于AB两点.

(Ⅰ)求抛物线的方程;

(Ⅱ)若点Q恰为线段AB的中点,求直线的方程;

(Ⅲ)过点作直线MAMB分别交抛物线于CD两点,请问CDQ三点能否共线?若能,求出直线的斜率;若不能,请说明理由.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)能,.

【解析】

(Ⅰ)根据题意,结合抛物线的性质,即可求出抛物线的方程为

(Ⅱ)设,设而不求利用点差法求出直线AB的斜率,再利用点斜式即可求出直线的方程。

(Ⅲ)设,且.联立直线与抛物线方程,得到联立方程,再利用韦达定理以及M,A,C三点共线得出的数量关系,假设C,D,Q三点共线,构造关于 的等式,转化为的等式,进行求解即可得出结论。

(Ⅰ)由题意有,及

解得.故抛物线的方程为.

(Ⅱ)设,则

两式相减得,即.

于是

(注:利用直线与抛物线方程联立,求得,同样得4分)

故直线l的方程为,即

(Ⅲ)设,且.

,得,则

MAC三点共线,可得,化简得,即.

同理可得,

假设CDQ三点共线,则有,化简得

进一步可得,,即,解得.

因此,当直线l的斜率时,CDQ三点共线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是由满足下列性质的函数构成的集合:在函数的定义城内存在,使得成立,已知下列函数:①;②;③;④. 其中属于集合的函数是________. (写出所有满足要求的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是菱形,.

1)证明:平面平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)若对任意的,总存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为是椭圆短轴的一个顶点,并且是面积为的等腰直角三角形.

(1)求椭圆的方程;

(2)设直线与椭圆相交于两点,过作与轴垂直的直线,已知点,问直线的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在“杨辉三角”中,去除所有为1的项,依次构成数列233464510105,…,则此数列前21项的和为_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,点在椭圆上,且的最小值是为坐标原点).

1)求椭圆的标准方程.

2)已知动直线与圆相切,且与椭圆交于两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)时,设的两个极值点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数满足,记的导函数为,当时恒有.,则m的取值范围是(

A.B.C.D.

查看答案和解析>>

同步练习册答案