【题目】已知抛物线过点,且P到抛物线焦点的距离为2直线过点,且与抛物线相交于A,B两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)若点Q恰为线段AB的中点,求直线的方程;
(Ⅲ)过点作直线MA,MB分别交抛物线于C,D两点,请问C,D,Q三点能否共线?若能,求出直线的斜率;若不能,请说明理由.
【答案】(Ⅰ);(Ⅱ);(Ⅲ)能,.
【解析】
(Ⅰ)根据题意,结合抛物线的性质,即可求出抛物线的方程为。
(Ⅱ)设,,设而不求利用点差法求出直线AB的斜率,再利用点斜式即可求出直线的方程。
(Ⅲ)设,,,,且.联立直线与抛物线方程,得到联立方程,再利用韦达定理以及M,A,C三点共线得出的数量关系,假设C,D,Q三点共线,构造关于 的等式,转化为的等式,进行求解即可得出结论。
(Ⅰ)由题意有,及,
解得.故抛物线的方程为.
(Ⅱ)设,,则, ,
两式相减得,即.
于是,,
(注:利用直线与抛物线方程联立,求得,同样得4分)
故直线l的方程为,即;
(Ⅲ)设,,,,且.
由,得,则, ,
由M,A,C三点共线,可得,化简得,即.
同理可得, ,
假设C,D,Q三点共线,则有,化简得,
进一步可得,,即,解得.
因此,当直线l的斜率时,C,D,Q三点共线.
科目:高中数学 来源: 题型:
【题目】设是由满足下列性质的函数构成的集合:在函数的定义城内存在,使得成立,已知下列函数:①;②;③;④. 其中属于集合的函数是________. (写出所有满足要求的函数的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,是椭圆短轴的一个顶点,并且是面积为的等腰直角三角形.
(1)求椭圆的方程;
(2)设直线与椭圆相交于两点,过作与轴垂直的直线,已知点,问直线与的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在“杨辉三角”中,去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列前21项的和为_______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的焦距为,点在椭圆上,且的最小值是(为坐标原点).
(1)求椭圆的标准方程.
(2)已知动直线与圆:相切,且与椭圆交于,两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com