分析 把点的极坐标化为直角坐标的方法,可得直线AB的方程,再利用点到直线的距离公式求得O点到直线AB的距离.
解答 解:根据点A,B的极坐标分别是(2$\sqrt{3}$,$\frac{π}{6}$),(3,$\frac{2π}{3}$),可得A、B的直角坐标分别是(3,$\sqrt{3}$)、(-$\frac{3}{2}$,$\frac{3\sqrt{3}}{2}$),
故AB的斜率为-$\frac{\sqrt{3}}{9}$,故直线AB的方程为 y-$\sqrt{3}$=-$\frac{\sqrt{3}}{9}$(x-3),即x+3$\sqrt{3}$y-12=0,
所以O点到直线AB的距离是 $\frac{|0+0-12|}{\sqrt{1+27}}$=$\frac{6\sqrt{7}}{7}$,
故答案为:$\frac{6\sqrt{7}}{7}$.
点评 本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com