精英家教网 > 高中数学 > 题目详情

如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且数学公式数学公式
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

解.(1)如图建系,设椭圆方程为,则c=1
又∵即(a+c)•(a-c)=1=a2-c2,∴a2=2
故椭圆方程为
(2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,则
设P(x1,y1),Q(x2,y2),∵M(0,1),F(1,0),故kPQ=1,
于是设直线l为y=x+m,由得3x2+4mx+2m2-2=0
又yi=xi+m(i=1,2)
得x1(x2-1)+(x2+m)(x1+m-1)=0即2x1x2+(x1+x2)(m-1)+m2-m=0由韦达定理得
解得或m=1(舍)经检验符合条件
分析:(1)设出椭圆的方程,根据题意可知c,进而根据求得a,进而利用a和c求得b,则椭圆的方程可得.
(2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,设出P,Q的坐标,利用点M,F的坐标求得直线PQ的斜率,设出直线l的方程,与椭圆方程联立,由韦达定理表示出x1+x2和x1x2,进而利用求得m.
点评:本题主要考查了直线与圆锥曲线的关系.考查了学生综合运用基础知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且
AF
FB
=1
|
OF
|=1

(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆长轴端点为,为椭圆中心,为椭圆的右焦点,

.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)如图,椭圆长轴端点为,为椭圆中心,  为椭圆的右焦点,且.(1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?

若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2014届山东省济宁市高二12月质检文科数学试卷(解析版) 题型:解答题

(本题满分12分)

如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,

,.

(1)求椭圆的标准方程;

(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省温州市高三五校联考数学理卷 题型:解答题

(本题满分15分)

如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,且

(1)求椭圆的标准方程;

(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案