精英家教网 > 高中数学 > 题目详情
近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进行了问卷调查得到了如下的列联表:
 
患心肺疾病
不患心肺疾病
合计

 
5
 

10
 
 
合计
 
 
50
 
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
临界值表供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
参考公式:其中
详见解析

试题分析:(1)根据在全部50人中随机抽取1人抽到患心肺疾病的概率为,可得患心肺疾病的人数,即可得到列联表;
(2)利用公式求得,与临界值比较,即可得到结论.
(1)列联表补充如下:
 
患心肺疾病
不患心肺疾病
合计

20
5
25

10
15
25
合计
30
20
50
 
(2)因为K2的观测值
所以K2≈8.333,
又P(K2≥7.789)=0.005=0.5%.
那么,我们有99.5%的把握认为是否患心肺疾病是与性别有关系的.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(2012•广东)某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
新能源汽车补贴标准
车辆类型
续驶里程(公里)



纯电动乘用车
万元/辆
万元/辆
万元/辆
某校研究性学习小组,从汽车市场上随机选取了辆纯电动乘用车,根据其续驶里程(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组
频数
频率









合计


 
(1)求的值;
(2)若从这辆纯电动乘用车中任选辆,求选到的辆车续驶里程都不低于公里的概率;
(3)若以频率作为概率,设为购买一辆纯电动乘用车获得的补贴,求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有3个,3号球有6个.
(1)从袋中任意摸出2个球,求恰好是一个2号球和一个3号球的概率;
(2)从袋中任意摸出2个球,记得到小球的编号数之和为,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标[70,76)[76,82)[82,88)[88,94)[94,100]
元件A81240328
元件B71840296
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一种元件B,若是正品可盈利50元,若是次品则亏损10元,记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知离散型随机变量的分布列为

1
2
3




的数学期望(   )
A.               B.              C.                 D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从1,2,3,4,5中选3个数,用ξ表示这3个数中最大的一个,则E(ξ)=(  )
A.3B.4.5C.5D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

将一枚硬币抛掷6次,求正面次数与反面次数之差ξ的概率分布列,并求出ξ的期望Eξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙等五名大运会志愿者被随机分到ABCD四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一岗位服务的概率;
(3)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案