【题目】已知曲线C的参数方程为 ,在同一平面直角坐标系中,将曲线C上的点按坐标变换 得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系. (Ⅰ)求曲线C'的极坐标方程;
(Ⅱ)若过点 (极坐标)且倾斜角为 的直线l与曲线C'交于M,N两点,弦MN的中点为P,求 的值.
科目:高中数学 来源: 题型:
【题目】如图,D、E分别是△ABC的边BC的三等分点,设 =m, =n,∠BAC= .
(1)用 、 分别表示 , ;
(2)若 =15,| |=3 ,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的A城市和交通拥堵严重的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
(Ⅰ)根据茎叶图,比较两城市满意度评分的平均值的大小及方差的大小(不要求计算出具体值,给出结论即可);
(Ⅱ)若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此2×2列联表,并据此样本分析是否有95%的把握认为城市拥堵与认可共享单车有关;
A | B | 合计 | |
认可 | |||
不认可 | |||
合计 |
(Ⅲ)若从此样本中的A城市和B城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自B城市的概率是多少?
附:参考数据:
(参考公式: )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数在区间上有最大值4 和最小值1,设.
(1)求的值;
(2)若不等式在区间上有解,求实数的取值范围;
(3)若有三个不同的实数解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com