精英家教网 > 高中数学 > 题目详情
在直角梯形ABCD中,∠ABC=∠BAD=90°,BE⊥平面ABCD,AB=BC=BE=2AD=2.
(Ⅰ)求异面直线DE与AC所成角的大小;
(Ⅱ)在线段CE上是否存在点F,使平面BDF⊥平面ADE,若存在,确定点F的位置,若不存在,请说明理由.
由于在直角梯形ABCD中,∠ABC=∠BAD=90°,BE⊥平面ABCD,
则AB,BC,BE两两垂直,
故可以B为原点建立如图所示空间直角坐标系B-xyz.

∵AB=BC=BE=2AD=2,
则B(0,0,0),A(0,2,0),C(2,0,0),D(1,2,0),E(0,0,2).
(Ⅰ)∵
DE
=(-1,-2,2)
AC
=(2,-2,0)

DE
AC
=(-1)×2+(-2)×(-2)=2

|
DE
|=
(-1)2+(-2)2+22
=3

|
AC
|=
22+(-2)2+02
=2
2

cos<
DE
AC
>=
DE
AC
|
DE
||
AC
|
=
2
6

故异面直线DE与AC所成角的大小为arccos
2
6

(Ⅱ)假设线段CE上存在这样的点F,不妨设F(a,0,2-a)(0≤a≤2)
BD
=(1,2,0)
BF
=(a,0,2-a)


若设平面BDF的法向量为
n
=(x,y,z)

故有
n
BD
=0
n
BF
=0
,则
x+2y=0
ax+(2-a)z=0

∴平面BDF的一个法向量为
n
=(2,-1,-
2a
2-a
)

∵在平面ADE中,
DE
=(-1,-2,2)
AD
=(1,0,0)

同理可得平面ADE的一个法向量为
m
=(0,1,1)

由于平面BDF⊥平面ADE,则
m
n

m
n
=2×0+(-1)×1+(-
2a
2-a
)×1=0

解得a=-2,由于点F在线段CE上,-2∉{a|0≤a≤2}
故在线段CE上不存在点F,使得平面BDF⊥平面ADE.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科)如图,正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,
求证:平面AMN平面EFDB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,ABCD-A1B1C1D1为正方体,下面结论中正确的结论是______.(把你认为正确的结论都填上)
①BD平面CB1D1
②AC1⊥平面CB1D1
③过点A1与异面直线AD和CB1成90°角的直线有2条.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(y的的7•海南)如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=9的°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知如图所示,PA、PO分别是平面α的垂线、斜线,AO是PO在平面α内的射影,且直线a?α,a⊥PO.求证:a⊥AO.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E为PC的中点.求证:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A1D1的中点.
(Ⅰ)求证:DE⊥平面BCE;
(Ⅱ)求证:AF平面BDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正方形ABCD和矩形ACEF所在的平面相互垂直,已知AB=2,AF=
2

(I)求证:EO⊥平面BDF;
(II)求二面角A-DF-B的大小.

查看答案和解析>>

同步练习册答案