【题目】已知函数f(x)=|2x-1|+|x+m|.
(l)当m=l时,解不等式f(x)≥3;
(2)证明:对任意x∈R,2f(x)≥|m+1|-|m|.
【答案】(1){x|x≤-1或x≥1};(2)见解析
【解析】
(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)根据绝对值三角不等式放缩论证.
(1)当m=1时,f(x)=|2x-1|+|x+1|,
①当x≤-1时,f(x)=-3x≥3,解得x≤-1,
②当-1<x<时,f(x)=-x+2≥3,解得x≤-1,与-1<x<矛盾,舍去,
③当x≥时,f(x)=3x≥3,解得x≥1,
综上,不等式f(x)<3的解集为{x|x≤-1或x≥1};
(2)2f(x)=|4x-2|+|2x+2m|=|2x-1|+|2x-1|+|2x+2m|≥|2x-1|+|2x+2m|≥|2x+2m-2x+1|
=|2m+1|=|(m+1)+m|≥|m+1|-|m|,
∴对任意x∈R,2f(x)≥|m+1|-|m|.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆,过动点M(0,m)的直线交x轴于点N,交椭圆C于A,P(其中P在第一象限,N在椭圆内),且M是线段PN的中点,点P关于x轴的对称点为Q,延长QM交C于点B,记直线PM,QM的斜率分别为k1,k2.
(1)当时,求k2的值;
(2)当时,求直线AB斜率的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C所对边分别为a、b、c,且2acosC=2b-c.
(1)求角A的大小;
(2)若AB=3,AC边上的中线SD的长为,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,、是离心率为的椭圆:的左、右焦点,过作轴的垂线交椭圆所得弦长为,设、是椭圆上的两个动点,线段的中垂线与椭圆交于、两点,线段的中点的横坐标为1.
(1)求椭圆的方程;
(2)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,平面PAC垂直圆O所在平面,直线PC与圆O所在平面所成角为60°,PA⊥PC.
(1)证明:AP⊥平面PBC
(2)求二面角P—AB一C的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的左、右顶点为,,上、下顶点为,,记四边形的内切圆为.
(1)求圆的标准方程;
(2)已知圆的一条不与坐标轴平行的切线交椭圆于P,M两点.
(i)求证:;
(ii)试探究是否为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com