精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=|2x-1|+|x+m|

l)当m=l时,解不等式fx)≥3;

2)证明:对任意xR2fx)≥|m+1|-|m|

【答案】(1){x|x≤-1或x≥1};(2)见解析

【解析】

1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集,(2)根据绝对值三角不等式放缩论证.

1)当m=1时,fx=|2x-1|+|x+1|

①当x≤-1时,fx=-3x≥3,解得x≤-1

②当-1x时,fx=-x+2≥3,解得x≤-1,与-1x矛盾,舍去,

③当x≥时,fx=3x≥3,解得x≥1

综上,不等式fx)<3的解集为{x|x≤-1x≥1}

22fx=|4x-2|+|2x+2m|=|2x-1|+|2x-1|+|2x+2m|≥|2x-1|+|2x+2m|≥|2x+2m-2x+1|

=|2m+1|=|m+1+m|≥|m+1|-|m|

∴对任意xR2fx≥|m+1|-|m|

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,短轴的一个端点到焦点的距离为.

(1)求椭圆的方程;

(2)是椭圆上的两点,线段的中点在直线上,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,过动点M0m)的直线交x轴于点N,交椭圆CAP(其中P在第一象限,N在椭圆内),且M是线段PN的中点,点P关于x轴的对称点为Q,延长QMC于点B,记直线PMQM的斜率分别为k1k2

1)当时,求k2的值;

2)当时,求直线AB斜率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的内角ABC所对边分别为abc,且2acosC=2b-c

1)求角A的大小;

2)若AB=3AC边上的中线SD的长为,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的极值点x1x2,且x1x2

1)求实数a的取值范围;

2)求证:x1x2a2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是离心率为的椭圆的左、右焦点,过轴的垂线交椭圆所得弦长为,设是椭圆上的两个动点,线段的中垂线与椭圆交于两点,线段的中点的横坐标为1.

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,平面PAC垂直圆O所在平面,直线PC与圆O所在平面所成角为60°,PA⊥PC.

(1)证明:AP⊥平面PBC

(2)求二面角P—AB一C的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】表示不大于实数的最大整数,函数,若关于的方程有且只有5个解,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右顶点为,上、下顶点为,记四边形的内切圆为.

(1)求圆的标准方程;

(2)已知圆的一条不与坐标轴平行的切线交椭圆PM两点.

(i)求证:

(ii)试探究是否为定值.

查看答案和解析>>

同步练习册答案