精英家教网 > 高中数学 > 题目详情

【题目】某企业生产甲、乙两种产品.已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,那么该企业可获得最大利润是(
A.12万元
B.20万元
C.25万元
D.27万元

【答案】D
【解析】解答:设该企业生产甲产品为x吨,乙产品为y吨,则该企业可获得利润为z=5x+3y,且 联立 解得
由图可知,最优解为P(3,4),
∴z的最大值为z=5×3+3×4=27(万元).
故选D.

分析:先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=5x+3y,再利用z的几何意义求最值,只需求出直线z=5x+3y过可行域内的点时,从而得到z值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l过直线x﹣y﹣1=0与直线2x+y﹣5=0的交点P.

(1)若l与直线x+3y﹣1=0垂直,求l的方程;

(2)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 的通项公式是 ,那么这个数列是(
A.递增数列
B.递减数列
C.常数列
D.摆动数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点P(2,4)作两条互相垂直的直线l1,l2,l1x轴于A,l2y轴于B,求线段AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Ω是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D的定圆所围成区域(含边界),A、B、C、D是该圆的四等分点,若点P(x,y)、P′(x′,y′)满足x≤x′且y≥y′,则称P优于P′,如果Ω中的点Q满足:不存在Ω中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上.

(Ⅰ)若圆Cy轴相切,求圆C的方程;

(Ⅱ)当a=0时,问在y轴上是否存在两点AB,使得对于圆C上的任意一点P,都有,若有,试求出点AB的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,若是线段上的动点,则下列结论不正确的是( )

A. 三棱锥的正视图面积是定值

B. 异面直线所成的角可为

C. 三棱锥的体积大小与点在线段的位置有关

D. 直线与平面所成的角可为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数fx)=x3﹣3x在区间(a,6﹣a2)上有最小值,则实数a的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)满足 ,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,方程f(x)﹣4ax﹣a=0有两个不等的实根,则实数a的取值范围是

查看答案和解析>>

同步练习册答案