精英家教网 > 高中数学 > 题目详情

【题目】如图,已知为等边三角形,为等腰直角三角形,.平面平面ABD,点E与点D在平面ABC的同侧,且.FAD中点,连接EF.

1)求证:平面ABC

2)求证:平面平面ABD.

【答案】1)见详解;(2)见详解

【解析】

1)取的中点,连接,可证出,由线面平行的判定定理即可证出;

2)首先证出平面ABD,再由(1)可证得平面ABD,根据面面垂直的判定定理即可证出.

1

的中点,连接

FAD中点,

四边形为平行四边形,,

又因为平面ABC平面ABC

所以平面ABC.

2)由(1)点的中点,且为等边三角形,

所以

又因为.平面平面ABD

所以平面ABC,所以,

,所以平面ABD

,所以平面ABD

平面AED

平面平面ABD.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数在区间上存在零点,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某产品的销售额与广告费用之间的关系如下表:

(单位:万元)

0

1

2

3

4

(单位:万元)

10

15

30

35

若根据表中的数据用最小二乘法求得的回归直线方程为,则下列说法中错误的是(

A.产品的销售额与广告费用成正相关

B.该回归直线过点

C.当广告费用为10万元时,销售额一定为74万元

D.的值是20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列的前n项和为,对于任意正整数mn及正常数q,当时,恒成立,若存在常数,使得为等差数列,则常数c的值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市《城市总体规划(年)》提出到年实现“分钟社区生活圈”全覆盖的目标,从教育与文化、医疗与养老、交通与购物、休闲与健身个方面构建“分钟社区生活圈”指标体系,并依据“分钟社区生活圈”指数高低将小区划分为:优质小区(指数为)、良好小区(指数为)、中等小区(指数为)以及待改进小区(指数为个等级.下面是三个小区个方面指标的调查数据:

注:每个小区“分钟社区生活圈”指数,其中为该小区四个方面的权重,为该小区四个方面的指标值(小区每一个方面的指标值为之间的一个数值).

现有个小区的“分钟社区生活圈”指数数据,整理得到如下频数分布表:

分组

频数

)分别判断三个小区是否是优质小区,并说明理由;

)对这个小区按照优质小区、良好小区、中等小区和待改进小区进行分层抽样,抽取个小区进行调查,若在抽取的个小区中再随机地选取个小区做深入调查,记这个小区中为优质小区的个数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年女排世界杯中,中国女子排球队以11连胜的优异战绩成功夺冠,为祖国母亲七十华诞献上了一份厚礼.排球比赛采用53胜制,前4局比赛采用25分制,每个队只有赢得至少25分,并同时超过对方2分时,才胜1局;在决胜局(第五局)采用15分制,每个队只有赢得至少15分,并领先对方2分为胜.在每局比赛中,发球方赢得此球后可得1分,并获得下一球的发球权,否则交换发球权,并且对方得1.现有甲乙两队进行排球比赛:

1)若前三局比赛中甲已经赢两局,乙赢一局.接下来两队赢得每局比赛的概率均为,求甲队最后赢得整场比赛的概率;

2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各14分,且甲已获得下一发球权.若甲发球时甲赢1分的概率为,乙发球时甲赢1分的概率为,得分者获得下一个球的发球权.设两队打了个球后甲赢得整场比赛,求x的取值及相应的概率px.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:函数|fa|2,命题Q:集合A={x|x2+a+2x+1=0xR}B={x|x0}AB=

1)分别求命题PQ为真命题时的实数a的取值范围;

2)当实数a取何范围时,命题PQ中有且仅有一个为真命题;

3)设PQ皆为真时a的取值范围为集合S,若RTS,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程。

已知曲线Ct为参数), C为参数)。

1)化CC的方程为普通方程,并说明它们分别表示什么曲线;

2)若C上的点P对应的参数为QC上的动点,求中点到直线

t为参数)距离的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序号

1

2

3

4

5

6

7

8

9

10

工业增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依据表格数据,得到下面的散点图及一些统计量的值.

5.5

20.6

82.5

211.52

129.6

(1)根据散点图和表中数据,此研究机构对工业增加值(万亿元)与年份序号的回归方程类型进行了拟合实验,研究人员甲采用函数,其拟合指数;研究人员乙采用函数,其拟合指数;研究人员丙采用线性函数,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数与拟合指数满足关系).

(2)根据(1)的判断结果及统计值,建立关于的回归方程(系数精确到0.01);

(3)预测到哪一年的工业增加值能突破30万亿元大关.

附:样本 的相关系数

.

查看答案和解析>>

同步练习册答案