在平面直角坐标系xoy中,设点F(1,0),直线l:x=-1,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
(1)求动点Q的轨迹的方程;
(2)记Q的轨迹的方程为E,过点F作两条互相垂直的曲线E的弦AB、CD,设AB、CD的中点分别为M,N.求证:直线MN必过定点R(3,0).
【答案】
分析:(1)由已知条件知,点R是线段FP的中点,RQ是线段FP的垂直平分线,点Q的轨迹E是以F为焦点,l为准线的抛物线,写出抛物线标准方程.
(2)设出直线AB的方程,把A、B坐标代入抛物线方程,再利用中点公式求出点M的坐标,同理可得N的坐标,求出直线MN的斜率,得到直线MN的方程并化简,可看出直线MN过定点.
解答:解:(Ⅰ)依题意知,直线l的方程为:x=-1,设直线l与x轴交于点K(-1,0),由OK平行于直线l可得,
OR是△FPK的中位线,故点R是线段FP的中点.
又RQ⊥FP,∴RQ是线段FP的垂直平分线.∴|PQ|是点Q到直线l的距离.
∵点Q在线段FP的垂直平分线,∴|PQ|=|QF|.
故动点Q的轨迹E是以F为焦点,l为准线的抛物线,其方程为:y
2=4x(x>0).
(Ⅱ)设A(x
A,y
A),B(x
B,y
B),M(x
M,y
M),N(x
N,y
N),直线AB的方程为y=k(x-1)
则
(1)-(2)得
,即
,
代入方程y=k(x-1),解得
. 所以点M的坐标为
.
同理可得:N的坐标为(2k
2+1,-2k). 直线MN的斜率为
,
方程为;
,整理得y(1-k
2)=k(x-3),
显然,不论k为何值,(3,0)均满足方程,所以直线MN恒过定点R(3,0).
点评:本题考查轨迹方程的求法、抛物线的定义、标准方程,以及简单性质的应用,直线过定点问题,属于难题.