【题目】已知,函数.
(1)当时,解不等式;
(2)若函数的值域为,求实数a的取值范围;
(3)设,若函数有且只有一个零点,求实数a的取值范围.
【答案】(1)(2)(3)
【解析】
(1)利用题意得到对数不等式,求解不等式,即可求得最终结果;
(2)将原问题转化为二次函数的问题,结合二次函数的开口方向和判别式可得关于实数的不等式组,求解不等式组即可;
(3)将原问题转化为函数只有一个根的问题,然后分类讨论即可求得最终结果.
(1)当时,不等式为:,可得:,则不等式解为.
(2)函数,
设函数的值域为M,则,
当,即时,不满足题意,
当,即时,,得实数的取值范围是.
(3)因有且只有一个零点,
故,原问题等价于方程
当满足时,只有唯一解,方程(*)化为,
①当时,解得,此时,满足题意;
②当时,两根均为,此时也满足;
③当且时,两根为,
当时,,
当时,,
由题意,,解得,
综上,a的取值范围是.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线l的参数方程为(t为参数,),以坐标原点为极点,轴正半轴为极轴,取相同的长度单位建立极坐标系,曲线C的极坐标方程为.
(1)当时,写出直线l的普通方程及曲线C的直角坐标方程;
(2)已知点,设直线l与曲线C交于A,B两点,试确定的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系中的原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(为实数.)
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线与曲线有公共点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某理财公司有两种理财产品和,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
投资结果 | 获利20% | 获利10% | 不赔不赚 | 亏损10% |
概率 | 0.2 | 0.3 | 0.2 | 0.3 |
产品(其中)
投资结果 | 获利30% | 不赔不赚 | 亏损20% |
概率 | 0.1 |
(1)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于0.7,求的取值范围;
(2)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪种产品?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区上年度电价为0.8元,年用电量为,本年度计划将电价降到0.55 元至0.75元之间,而用户期待电价为0.4元,下调电价后新增加的用电量与实际电价和用户期望电价的差成反比(比例系数为K),该地区的电力成本为0.3元.(注:收益=实际用电量(实际电价-成本价)),示例:若实际电价为0.6元,则下调电价后新增加的用电量为元)
(1)写出本年度电价下调后,电力部门的收益与实际电价的函数关系;
(2)设,当电价最低为多少仍可保证电力部门的收益比上一年至少增长?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数.
(1)若的定义域为,求实数的取值范围;
(2)当时,求函数的最小值;
(3)是否存在非负实数,使得函数的定义域为,值域为,若存在,求出的值;若不存在,则说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com