精英家教网 > 高中数学 > 题目详情
已知C1:y=logax,c2:y=logbx,c3:y=logcx的图象如图(1)所示.则在图(2)中函数y=ax、y=bx、y=cx的图象依次为图中的曲线
 

考点:对数函数的图像与性质
专题:函数的性质及应用
分析:先利用y=1的函数值,即是对数函数的底数,即可得出曲线C1、C2、C3对应的底数值关系,利用x=1的函数值,即是指数函数的底数,即可得出曲线m1、m2、m3对应的底数值关系,问题得以解决
解答: 解:利用y=1的函数值,即是对数函数的底数,即可得出曲线C1、C2、C3对应的底数值关系,
∴b<a<c,
利用x=1的函数值,即是指数函数的底数,即可得出曲线m1、m2、m3对应的底数值关系,
∴m2<m1<m3
∴y=ax、y=bx、y=cx的图象依次为图中的曲线线m1、m2、m3
故答案为:m1、m2、m3
点评:本题主要考查了对数和指数函数的图象的变化与对数函数的底数指数函数的底数的联系,考查数形结合的思想,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

n边形内角和为(n-2)•180°,若一个五边形的内角成等差数列,且最小角为46°,则最大角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的首项为1,公比为q,前n项和为S,则数列{
1
an
}的前n项之和为(  )
A、
1
S
B、S
C、S•q1-n
D、S-1•q1-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面上取定一点O,从O出发引一条射线Ox,再取定一个长度单位及计算角度的正方向(取逆时针方向为正).就称建立了一个极坐标系,这样,平面上任一点P的位置可用有序数对(ρ,θ)确定,其中ρ表示线段OP的长度,θ表示从Ox到OP的角度,在极坐标下,给出下列命题:
(1)平面上的点A(2,-
π
6
)与B(2,2kπ+
11π
6
)(k∈Z)重合;
(2)方程θ=
π
3
和方程ρsinθ=2分别都表示一条直线;
(3)动点A在曲线ρ(cos2
θ
2
-
1
2
)=2上,则点A与点O的最短距离为2;
(4)已知两点A(4,
3
),B(
4
3
3
π
6
),动点C在曲线ρ=8上,则△ABC面积的最大值为
40
3
3

其中正确命题的序号为
 
(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=lg(ax-k•2x)(a>0且a≠2)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
x
lnx
,f(x)=g(x)-ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(3)若?x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A=37+C
2
7
•35+C
4
7
•33+C
6
7
•3,B=C
1
7
•36+C
3
7
•34+C
5
7
•32+1,则A-B的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知向量
a
=(x,y-2),
b
=(kx,y+2)(k∈R),若|
a
+
b
|=|
a
-
b
|.
(1)求动点M(x,y)的轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当k=
4
3
时,已知F1(0,-1)、F2(0,1),点P轨迹T在第一象限的一点,且满足|
PF1
|-|
PF2
|=1,若点Q是轨迹T上不同于点P的另一点,问是否存在以PQ为直径的圆G过点F2,若存在,求出圆G的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的一段图象如图所示,且函数过点(0,1)
(1)求函数f1(x)的解析式;
(2)将函数y=f1(x)的图象向右平移
π
4
个单位长度,得到函数y=f2(x),求y=f1(x)+f2(x)的最大值,并求此时自变量x的集合.

查看答案和解析>>

同步练习册答案