精英家教网 > 高中数学 > 题目详情
若数列{an}的前n项和Sn=n2+3n,则a6+a7+a8=________.
48
a6+a7+a8=S8-S5=88-40=48
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为数列的前项和,对任意的,都有为常数,且.
(1)求证:数列是等比数列;
(2)设数列的公比,数列满足,求数列的通项公式;
(3)在满足(2)的条件下,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}为等差数列,若<-1,且它们的前n项和Sn有最大值,求使得Sn<0的n的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}的首项为a,公差为d,且方程ax2-3x+2=0的解为1,d.
(1)求{an}的通项公式及前n项和公式;
(2)求数列{3n-1an}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x满足f′=0.
(1)求数列{an}的通项公式;
(2)若bn=2(an+),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设{an}是公比为正数的等比数列,a1=2,a3=a2+4,
(1)求{an}的通项公式;
(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设数列{an}满足a1+2a2=3,且对任意的n∈N*,点列{Pn(nan)}恒满足PnPn+1=(1,2),则数列{an}的前n项和Sn为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设a>0,若an且数列{an}是递增数列,则实数a的范围是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等差数列{an}中,a1=2,d=3,则a6=________.

查看答案和解析>>

同步练习册答案