精英家教网 > 高中数学 > 题目详情

【题目】已知数列是各项均不为的等差数列,公差为为其前项和,且满足

.数列满足为数列的前n项和.

(1)

(2)若对任意的,不等式恒成立,求实数的取值范围.

【答案】(1)(2).

【解析】

等差数列的通项公式及应用是数列的重点内容,数列的大题对逻辑推理能力有较高的要求,在数列中突出考查学生的理性思维,这是近几年新课标高考对数列考查的一个亮点,也是一种趋势.随着新课标实施的深入,高考关注的重点为等差、等比数列的通项公式,错位相减法、裂项相消法等求数列的前n项的和等等.

1

时,不满足条件,舍去.因此

,,

2)当为偶数时,

,当时等号成立,最小值为

因此

为奇数时,

时单调递增,的最小值为

综上,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若对任意,都有,求实数的取值范围;

2)在第(1)问求出的实数的范围内,若存在一个与有关的负数,使得对任意恒成立,求的最小值及相应的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连结圆周上九个不同点的36条弦要么染成红色,要么染成蓝色,我们称它们为红边蓝边”.假定由这九个点中每三个点为顶点的三角形中都含有红边”.证明:这九个点中存在四个点,两两连结的六条边都是红边.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然底数),.

(1)当时,对任意的,都有不等式,求实数的取值范围;

(2)若函数上的减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:,其中为实数,为正整数.

(1)对任意实数,证明数列不是等比数列;

(2)对于给定的实数,试求数列的前项和

(3)设,是否存在实数,使得对任意正整数,都有成立?若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知顶点,动点分别在轴,轴上移动,延长至点,使得,且.

(1)求动点的轨迹

(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;

(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,ACBCAC=BC=OM分别为ABVA的中点.

1)求证:VB∥平面MOC

2)求证:平面MOC⊥平面VAB

3)求三棱锥V-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体,关于其结构特征,下列说法不正确的是

A. 该几何体是由两个同底的四棱锥组成的几何体

B. 该几何体有12条棱、6个顶点

C. 该几何体有8个面,并且各面均为三角形

D. 该几何体有9个面,其中一个面是四边形,其余均为三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的是(

A.半圆弧以其直径为轴旋转一周所形成的曲面叫做球

B.直角三角形绕一直角边为轴旋转一周得到的旋转体是圆锥

C.夹在圆柱的两个平行截面间的几何体还是一个旋转体

D.用一个平面截圆锥底面与截面组成的部分是圆台

查看答案和解析>>

同步练习册答案