精英家教网 > 高中数学 > 题目详情

已知数列{an}中,若2an=an-1+an+1(n∈N*,n≥2),则下列各不等式中一定成立的是


  1. A.
    a2a4≤a32
  2. B.
    a2a4<a32
  3. C.
    a2a4≥a32
  4. D.
    a2a4>a32
A
分析:由2an=an-1+an+1可得数列为等差数列,由等差数列的通项公式可得,a2a4=(a3-d)(a3+d)=a32-d2≤a32
解答:由2an=an-1+an+1可得数列为等差数列
∵a2a4=(a3-d)(a3+d)=a32-d2≤a32
故选A.
点评:本题主要考查了利用等差中项法判断等差数列,等差数列的定义及通项公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案