精英家教网 > 高中数学 > 题目详情

【题目】,曲线在点处的切线与直线垂直.

(1)求的值;

(2)若对于任意的恒成立,求的取值范围.

【答案】(1)a=0(2)m≥1

【解析】试题分析:(1)先求导数,再根据导数几何意义得f′(1)=1,求得的值;(2)先分离变量 ,再利用导数研究函数单调性,最后根据洛必达法则求函数最大值,即得的取值范围.

试题解析:(1)f′(x)=

由题设f′(1)=1,∴,∴a=0.

(2)x∈[1,+∞),f(x)≤m(x﹣1),

即4lnx≤m(3x﹣﹣2)

设g(x)=4lnx﹣m(3x﹣﹣2),即x∈[1,|+∞),g(x)≤0,

∴g′(x)=﹣m(3+)=,g′(1)=4﹣4m

若m≤0,g′(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾

若m∈(0,1),当x∈(1,),g′(x)>0,g(x)单调递增,g(x)≥g(1)=0,与题设矛盾.

若m≥1,当x∈(1,+∞),),g′(x)≤0,g(x)单调递减,g(x)≤g(1)=0,即不等式成立

综上所述,m≥1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,且离心率为.过点的直线与椭圆交于 两点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若点为椭圆的右顶点,探究: 是否为定值,若是,求出该定值,若不是,请说明理由.(其中, 分别是直线的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中, PA⊥平面ABCDEBD的中点,GPD的中点,△DAB≌△DCBEA=EB=AB=1 ,连接CE并延长交ADF

Ⅰ)求证:ADCG

Ⅱ)求平面BCP与平面DCP的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,记随机变量表示质量在内的芒果个数,求的分布列及数学期望.

(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若满足条件:存在,使上的值域为,则称为“倍缩函数”.若函数为“倍缩函数”,则实数的取值范围是

A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]

C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年6月深圳地铁总公司对深圳地铁1号线30个站的工作人员的服务态度进行了满意度调查,其中世界之窗、白石洲、高新园、深大、桃园、大新6个站的得分情况如下:

地铁站

世界之窗

白石州

高新园

深大

桃园

大新

满意度得分

70

76

72

70

72

x

已知6个站的平均得分为75分.

(1)求大新站的满意度得分x,及这6个站满意度得分的标准差;

(2)从表中前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线在点处的切线方程;

2)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的圆心到直线的距离;

(2)设圆与直线交于点,若点的坐标为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构组织语文、数学学科能力竞赛,按照一定比例淘汰后,颁发一二三等奖.现有某考场的两科考试成绩数据统计如下图所示,其中数学科目成绩为二等奖的考生有人.

(Ⅰ)求该考场考生中语文成绩为一等奖的人数;

(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的学生中各抽取人,进行综合素质测试,将他们的综合得分绘成茎叶图,求样本的平均数及方差并进行比较分析;

(Ⅲ)已知本考场的所有考生中,恰有人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取人进行访谈,求两人两科成绩均为一等奖的概率.

查看答案和解析>>

同步练习册答案