分析 (1)连接BE,推民出BE⊥AE,从而BE⊥平面ADE,由此能证明平面BDE⊥平面ADE.
(2)取AE中点F,连结DF,由VC-BED=VD-BCE,能求出三棱锥C-BDE的体积.
解答 (本小题12分)
证明:(1)连接BE,∵长方形ABCD中,AB=2,AD=1,
E为DC的中点,DE=1,∴AE=BE=$\sqrt{2}$
∴AE2+BE2=2=AB2,∴BE⊥AE.…(3分)
∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,BE?平面ABCE
∴BE⊥平面ADE,又∵BE?平面BDE,
∴平面BDE⊥平面ADE.…(6分)
解:(2)取AE中点F,连结DF,
∵AD=DE,∴DF⊥AE,
又∵平面ADE⊥平面ABCE,且交线为AE,DF?平面ADE,
∴DF⊥平面BCE…(9分)
在Rt△ADE中,AD=DE=1,AE=$\sqrt{2}$,∴DF=$\frac{\sqrt{2}}{2}$,
∴${V_{D-BCE}}=\frac{1}{3}{S_{△BCE}}•DF=\frac{1}{3}×\frac{1}{2}EC•BC•DF=\frac{{\sqrt{2}}}{12}$…(11分)
又∵VC-BED=VD-BCE,
∴三棱锥C-BDE的体积${V_{C-EBD}}=\frac{{\sqrt{2}}}{12}$…(12分)
点评 本题考查面面垂直的证明,考查三棱锥体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 10cm | B. | 8cm | C. | $(2\sqrt{3}+4)cm$ | D. | $4\sqrt{2}cm$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com