精英家教网 > 高中数学 > 题目详情

设函数

(Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程;

(Ⅱ)若函数在区间内不单调,求实数的取值范围。

 

【答案】

(Ⅰ)切线方程为;(Ⅱ)

【解析】

试题分析:(Ⅰ)求函数的图像在处的切线方程,首先求出函数的解析式,而已知若时,函数取得极值,因此先求出数的导函数,令导函数在处的值为,求出的解析式,将代入求出切点坐标,将代入导函数求出切线的斜率,利用点斜式求出切线的方程.(Ⅱ)若函数在区间内不单调,即函数在区间有极值,即导函数在区间上有解,令导函数,分离出,求出上的范围,从而得实数的取值范围.

试题解析:(Ⅰ)  由

   当时,  即切点

∴切线方程为

(Ⅱ)在区间内不单调,即有解,所以,由,令,知单调递减,在,所以,即,即,而当时,∴舍去   综上

考点:函数在某点取得极值的条件;函数的单调性与导数的关系;利用导数研究曲线上某点切线方程.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分13分) 设函数

(1)若时函数有三个互不相同的零点,求的取值范围;

(2)若函数内没有极值点,求的取值范围;

(3)若对任意的,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数

(1)若时函数有三个互不相同的零点,求的取值范围;

(2)若函数内没有极值点,求的取值范围;

(3)若对任意的,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三第二次联考数学文卷 题型:解答题

设函数

(1)若时,函数取得极值,求函数的图像在处的切线方程;

(2)若函数在区间内不单调,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数数学公式
(1)若数学公式时,直线l与函数f(x)和函数g(x)的图象相切于同一点,求切线l的方程;
(2)若f(x)在[2,4]内为单调函数,求实数a的取值范围.
说明:请考生在第22、23、24三题中任选一题作答,如果多做,则按所做第一题记分.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数

(1)若时,函数取得极值,求函数的图像在处的切线方程;

(2)若函数在区间内不单调,求实数的取值范围。

查看答案和解析>>

同步练习册答案