精英家教网 > 高中数学 > 题目详情
16.在区间[-1,3]上随机取一个数x,则|x|≤2的概率为$\frac{3}{4}$.

分析 由条件知-1≤x≤3,然后解不等式的解,根据几何概型的概率公式即可得到结论.

解答 解:在区间[-1,3]之间随机抽取一个数x,则-1≤x≤3,
由|x|≤2得-2≤x≤2,
∴根据几何概型的概率公式可知满足|x|≤1的概率为$\frac{2+1}{3+1}$=$\frac{3}{4}$,
故答案为$\frac{3}{4}$.

点评 本题主要考查几何概型的概率的计算,根据不等式的性质解出不等式的是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列函数中,既是奇函数又在区间(0.+∞)上单调递增的函数是(  )
A.y=1nxB.y=x3C.y=2|x |D.y=-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点为A,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于M、N两点,直线AM的斜率为$\frac{1}{2}$.
(1)求椭圆Γ的离心率;
(2)若△AMN的外接圆在点M处的切线与椭圆交于另一点D,△F2MD的面积为$\frac{6}{7}$,求椭圆Γ的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆O经过三点A(0,0),B(1,1),C(4,2);
(1)求该圆的方程;
(2)求过点D(2,0)的最短弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列{an}满足a1=2,${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}(n∈{N^*})$,则a6=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,已知cosB=$\frac{3}{5}$,sinC=$\frac{2}{3}$,AC=2,那么边AB等于(  )
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{20}{9}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)的定义域为[1,2],则函数y=f(x2)的定义域为(  )
A.[1,4]B.[1,$\sqrt{2}$]C.[-$\sqrt{2}$,$\sqrt{2}$]D.[-$\sqrt{2}$,-1]∪[1,$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若$\frac{cosA}{cosB}=\frac{b}{a}$,则△ABC是(  )
A.等腰或直角三角形B.等边三角形
C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知直线l与球O有且只有一个公共点P,从直线l出发的两个半平面α,β截球O的两个截面圆的半径分别为1、2,二面角α-l-β的平面角为$\frac{2π}{3}$,则球O的表面积$\frac{112}{3}π$.

查看答案和解析>>

同步练习册答案