【题目】已知A(2,0),B(0,2),,O为坐标原点.
(1),求sin 2θ的值;
(2)若,且θ∈(-π,0),求与的夹角.
【答案】(1);(2)
【解析】
分析:(1) 先根据向量数量积得sin θ+cos θ值,再平方得结果,(2)先根据向量的模得cos θ,即得C点坐标,再根据向量夹角公式求结果.
详解:(1)∵=(cos θ,sinθ)-(2,0)=(cos θ-2,sin θ),
=(cos θ,sin θ)-(0,2)=(cos θ,sin θ-2),
=cos θ(cos θ-2)+sin θ(sin θ-2)=cos2θ-2cos θ+sin2θ-2sin θ=1-2(sin θ+cos θ)=-
∴sin θ+cos θ=,
∴1+2sin θcos θ=,
∴sin 2θ=-1=-.
(2)∵=(2,0),=(cos θ,sin θ),
∴+=(2+cos θ,sin θ),
∵|+|=,所以4+4cos θ+cos2θ+sin2θ=7,
∴4cos θ=2,即cos θ=.
∵-π<θ<0,∴θ=-,
又∵=(0,2),=,
∴cos〈,〉=,∴〈,〉=.
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,点在抛物线上,且。
(Ⅰ)求抛物线的标准方程及实数的值;
(Ⅱ)直线过抛物线的焦点,且与抛物线交于两点,若(为坐标原点)的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按 1小时计算).有甲、乙两人独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.
(1)求甲、乙两人所付租车费用相同的概率;
(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个圆柱形圆木的底面半径为1 m,长为10 m,将此圆木沿轴所在的平面剖成两部分.现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).
(1)求V关于θ的函数表达式;
(2)求的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (为实常数) .
(I)当时,求函数在上的最大值及相应的值;
(II)当时,讨论方程根的个数.
(III)若,且对任意的,都有,求
实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com