精英家教网 > 高中数学 > 题目详情
3.已知一个算法的程序框图如图所示,则y与x的函数关系式表示为y=$\left\{\begin{array}{l}{x}^{2}-1,x≥0\\ 2{x}^{2}-5,x<0\end{array}\right.$.

分析 由已知框图中两条分支上对应的操作,可得分段函数的解析式.

解答 解:由已知中程序框图可得:
该程序的功能是计算并输出函数y=$\left\{\begin{array}{l}{x}^{2}-1,x≥0\\ 2{x}^{2}-5,x<0\end{array}\right.$的值,
故答案为:y=$\left\{\begin{array}{l}{x}^{2}-1,x≥0\\ 2{x}^{2}-5,x<0\end{array}\right.$

点评 本题考查的知识点是程序框图,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知点F1(-2$\sqrt{2}$,0),F2(2$\sqrt{2}$,0),动点P为曲线C上任意点且满足|PF1|+|PF2|=4$\sqrt{3}$.
(1)求曲线C的方程;
(2)若斜率为1的直线l与曲线C交于A、B两点,且P(-3,2)在线段AB的垂直平分线上,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知tanα,tanβ是关于x的一元二次方程x2+px+2=0的两实根,求$\frac{sin(α+β)}{cos(α-β)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E为AA1的中点.
(1)求异面直线BE与CD1所成角的余弦值.
(2)求EC1与平面DCC1D1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,
平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.
(Ⅰ)证明:AG⊥平面ABCD;
(Ⅱ)若直线BF与平面ACE所成角的正弦值为$\frac{\sqrt{6}}{9}$,求AG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于大于1的自然数m的三次幂可用奇数进行以下方式的“分裂”:23=$\left\{\begin{array}{l}{3}\\{5}\end{array}\right.$,33=$\left\{\begin{array}{l}{7}\\{9}\\{11}\end{array}\right.$,43=$\left\{\begin{array}{l}{13}\\{15}\\{17}\\{19}\end{array}\right.$,….仿此,若m3的“分裂数”中有一个是413,则m=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在多面体ABCDEF中,四边形ABCD为矩形,底面CDEF为直角梯形,且平面ABCD⊥平面CDEF,CF∥DE,CD⊥DE,AB=2BC=2CF=2,DE=3CF.
(1)试问:线段AE上是否存在一点P,使得PF∥平面ABCD?请说明理由;
(2)若P是AE的中点,求三棱锥P-CEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在圆柱EF中,底面圆的半径为2,母线长为6,$\widehat{AB}$和$\widehat{CD}$的长均为所在圆的周长的$\frac{1}{6}$,若沿着面ABCD将圆柱截开,试求所截得的体积较小的几何体的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xoy中,椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,直线l:y=$\frac{1}{2}$x与椭圆E相交于A,B两点,AB=$4\sqrt{5}$,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N.
(1)求a,b的值;
(2)求证:直线MN的斜率为定值.

查看答案和解析>>

同步练习册答案