精英家教网 > 高中数学 > 题目详情
19.若函数f(x)=$\frac{1}{3}$x3-(a+$\frac{1}{2}$)x2+(a2+a)x-$\frac{1}{2}$a2+$\frac{1}{2}$有两个以上的零点,则a的取值范围是(  )
A.(-2,-1)B.(-∞,-2)∪(-1,+∞)C.$(-\root{3}{{\frac{3}{2}}},-1)$D.$(-∞,-\root{3}{{\frac{3}{2}}})∪(-1,+∞)$

分析 求出函数的导数,得到极值点,利用已知条件列出不等式求解即可.

解答 解:f′(x)=x2-(2a+1)x+a(a+1)=(x-a)[x-(a+1)],
f(x)在x=a处取得极大值f(a)=$\frac{1}{3}$a3+$\frac{1}{2}$,
在x=a+1处取得极小值f(a+1)=$\frac{1}{3}$a3+$\frac{1}{3}$,
∴$\frac{1}{3}$a3+$\frac{1}{2}$>0且$\frac{1}{3}$a3+$\frac{1}{3}$<0,解得a$>-\root{2}{\frac{3}{2}}$且a<-1,
可得a∈$(-\root{3}{{\frac{3}{2}}},-1)$.
故选:C.

点评 本题考查函数的导数的应用,函数的极值的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的中心在坐标原点O,右焦点$F(\sqrt{3},0)$,M、N是椭圆C的左、右顶点,D是椭圆C上异于M、N的动点,且△MND面积的最大值为2.
(1)求椭圆C的标准方程;
(2)设直线l与椭圆C相交于A,B两点,直线OA,l,OB的斜率分别为k1,k,k2(其中k>0)△OAB的面积为S,以OA,OB为直径的圆的面积分别为S1,S2,若k1,k,k2恰好构成等比数列,求$\frac{{{S_1}+{S_2}}}{S}$的最小值,并此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在Rt△ABC中,∠A=90°,D是AC上一点,E是BC上一点,若AB=$\frac{1}{2}BD,CE=\frac{1}{4}$EB.∠BDE=120°,CD=3,则BC=$\sqrt{93}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若将函数y=2sin2x的图象向左平移$\frac{π}{12}$个单位得到f(x)的图象,则下列哪项是f(x)的对称中心(  )
A.$(\frac{π}{12},0)$B.$(\frac{5π}{12},0)$C.$(-\frac{5π}{12},0)$D.$(\frac{π}{6},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等比数列{an}的前n项和为Sn,若a3=3,且a2016+a2017=0,则S101等于(  )
A.3B.303C.-3D.-303

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某电商对10000名网购者2015年度消费情况进行统计,其消费频率分布直方图如图,则在这些网购者中,消费金额在[0.5,0.9]内的人数为(  )
A.2000B.4500C.6000D.7500

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+ax2-1,g(x)=ex-e.
(1)讨论f(x)的单调区间;
(2)若a=1,且对于任意的x∈(1,+∞),mg(x)>f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.用秦九韶算法求多项式f(x)=3x5-2x4+3x3-6x2+7x-8当x=2时的值的过程中v3=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}的前7项和为14,则${e^{a_2}}•{e^{a_3}}•{e^{a_5}}•{e^{a_6}}$=(  )
A.e2B.e4C.e8D.e16

查看答案和解析>>

同步练习册答案