已知圆的方程为,定直线的方程为.动圆与圆外切,且与直线相切.
(1)求动圆圆心的轨迹的方程;
(2)直线与轨迹相切于第一象限的点, 过点作直线的垂线恰好经过点,并交轨迹于异于点的点,求直线的方程及的长.
(1);(2)直线PQ的方程:x+y-6=0,|PQ|=.
解析试题分析:(1)设圆心C的坐标为(x,y),根据题意可以得到关于x,y的方程组,消去参数以后即可得到x,y所满足的关系式,即圆心C的轨迹M的方程;(2)设点P的坐标为,根据题意可以把l’用含x0的代数式表示出来,由经过点A(0,6)可以求得点P的坐标与l’的方程,再联立(1)中M的轨迹方程,即可求出Q的坐标,从而得到|PQ|d的长.
(1)设动圆圆心C的坐标为(x,y),动圆半径为R,则 ,且
|y+1|=R 2分,可得.
由于圆C1在直线l的上方,所以动圆C的圆心C应该在直线l的上方,所以有y+1>0,从而得,整理得,即为动圆圆心C的轨迹M的方程. 5分
(2)如图示,设点P的坐标为,则切线的斜率为,可得直线PQ的斜率为,所以直线PQ的方程为.由于该直线经过点A(0,6),所以有,得.因为点P在第一象限,所以,点P坐标为(4,2),直线PQ的方程为x+y-6=0. 9分
把直线PQ的方程与轨迹M的方程联立得,解得x=-12或4
12分
科目:高中数学 来源: 题型:解答题
如图,已知直线l与抛物线相切于点P(2,1),且与轴交于点A,定点B的坐标为(2,0) .
(1)若动点M满足,求点M的轨迹C;
(2)若过点B的直线l(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为.
(1)求轨迹为的方程;
(2)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知两条抛物线和,过原点的两条直线和,与分别交于两点,与分别交于两点.
(1)证明:
(2)过原点作直线(异于,)与分别交于两点.记与的面积分别为与,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆的焦点在轴上,离心率为,且经过点.
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆,设为圆上不在坐标轴上的任意一点,为轴上一点,过圆心作直线的垂线交椭圆右准线于点.问:直线能否与圆总相切,如果能,求出点的坐标;如果不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(2011•重庆)如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2.
(Ⅰ)求该椭圆的标准方程.
(Ⅱ)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣.
问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆:的左顶点为,直线交椭圆于两点(上下),动点和定点都在椭圆上.
(1)求椭圆方程及四边形的面积.
(2)若四边形为梯形,求点的坐标.
(3)若为实数,,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com