精英家教网 > 高中数学 > 题目详情

【题目】(本题满分15分)如图,已知抛物线,点A,抛物线上的点.过点B作直线AP的垂线,垂足为Q.

)求直线AP斜率的取值范围;

)求的最大值.

【答案】)(-1,1)

解析本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力。满分15分。

)设直线AP的斜率为k,

k=

因为,所以直线AP斜率的取值范围是(-11)。

)联立直线APBQ的方程

解得点Q的横坐标是

因为|PA|==

|PQ|= =

所以|PA||PQ|= -k-1(k+1)3

f(k)= -k-1(k+1)3

因为=

所以 f(k)在区间(-1)上单调递增,(1)上单调递减,

因此当k=时,|PA||PQ| 取得最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c.已知
(1)求角A的大小;
(2)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,且AD=4DC.
(Ⅰ)求BD的长;
(Ⅱ)求sin∠CBD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族人数

占本组的频率

第一组

[25,30)

120

0.6

第二组

[30,35)

195

p

第三组

[35,40)

100

0.5

第四组

[40,45)

a

0.4

第五组

[45,50)

30

0.3

第六组

[50,55)

15

0.3


(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB= ,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等边三角形的边长为4,四边形为正方形,平面平面 分别是线段 上的点.

(Ⅰ)如图①,若为线段的中点, ,证明: 平面

(Ⅱ)如图②,若 分别为线段 的中点, ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式:
(1) >1;
(2)x2﹣ax﹣2a2<0 (a为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用an的信息如图.
(1)求an
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

如图,在四棱锥平面.

(I)求异面直线所成角的余弦值

(II)求证:平面

(II)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案