精英家教网 > 高中数学 > 题目详情

【题目】《朗读者》以精美的文字,最平实的情感读出文字背后的价值,感染了众多听众,中央电视台在2018年推出了《朗读者第二季》,电视台节目组要从2018名观众中抽取50名幸运观众.先用简单随机抽样从2018人中剔除18人,剩下的2000人再按系统抽样方法抽取50人,则在2018人中,每个人被抽取的可能性 ( )

A. 都相等,且为B. 都相等,且为C. 均不相等D. 不全相等

【答案】A

【解析】

利用系统抽样的方法,先剔除18人,每人被剔除的概率是相等的,故系统抽样每人被抽取的概率为

系统抽样中,若所给的总体个数不能被样本容量整除,则要先剔除几个个体,本题先剔除18个人,然后再分组,剔除过程中,每个个体被剔除的概率相等,故每人被抽取的可能性是相等的,且为

故选A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4—4:极坐标与参数方程

在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线

Ⅰ)求曲线和直线的普通方程;

Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解高一学生的视力健康状况,在高一年级体检活动中采用统一的标准对数视力表,按照《中国学生体质健康监测工作手册》的方法对1039名学生进行了视力检测,判断标准为:双眼裸眼视力为视力正常, 为视力低下,其中为轻度, 为中度, 为重度.统计检测结果后得到如图所示的柱状图.

(1)求该校高一年级轻度近视患病率;

(2)根据保护视力的需要,需通知检查结果为“重度近视”学生的家长带孩子去医院眼科进一步检查和确诊,并开展相应的矫治,则该校高一年级需通知的家长人数约为多少人?

(3)若某班级6名学生中有2人为视力正常,则从这6名学生中任选2人,恰有1人视力正常的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量函数,其图象的两条相邻对称轴间的距离为.

1)求函数的解析式;

2)将函数的图象上各点的横坐标缩短为原来的,纵坐标不变,再将图象向右平移个单位,得到的图象,求的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处与直线相切,求的值;

2)在(1)的条件下,求上的最大值;

3)若不等式对所有的都成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数)的部分图象如图中实线所示,图中圆C的图象交于MN两点,且My轴上,则下列说法中正确的是(

A.函数的最小正周期是2π

B.函数的图象关于点成中心对称

C.函数单调递增

D.将函数的图象向左平移后得到的关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:①函数

②向量,且ω0

③函数的图象经过点

请在上述三个条件中任选一个,补充在下面问题中,并解答.

已知 ,且函数fx)的图象相邻两条对称轴之间的距离为.

1)若,且,求fθ)的值;

2)求函数fx)在[02π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某单位45名职工中随机抽取5名职工参加一项社区服务活动,用随机数法确定这5名职工现将随机数表摘录部分如下:

从随机数表第一行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第5个职工的编号为

A.23B.37C.35D.17

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请用空间向量求解已知正四棱柱中, 分别是棱上的点,且满足

求异面直线所成角的余弦值;

求面与面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案