精英家教网 > 高中数学 > 题目详情

【题目】中,,若,则

A. B. C. D.

【答案】D

【解析】

根据题意,由向量线性运算法则可得=,即可得P为△ABC的重心,则有++=,由正弦定理分析sinB+2sinA+3sinC=可得b+2a+3c=,由向量减法法则可得b(+2a+3c=,即b+(2a﹣b)+3c=,由平面向量基本定理可得,解可得a=b=3c,由余弦定理计算可得答案.

:根据题意,如图,在△ABC中,设DBC的中点,

+=2

又由=+),则=

P为△ABC的重心,则有++=

sinB+2sinA+3sinC=,则b+2a+3c=

=

b(+2a+3c=

b+(2a﹣b)+3c=

又由++=

则有,解可得a=b=3c,

cosC==

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4-4:坐标系与参数方程

在直角坐标系xOy中,曲线的参数方程为为参数),M上的动点,P点满足,点P的轨迹为曲线

I)求的方程;

II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为A,与的异于极点的交点为B,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体 中, 分别为 的中点,点 是底面内一点,且 平面 ,则 的最大值是( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由

参照附表,得到的正确结论是

  

A. 99.5%以上的把握认为“爱好该项运动与性别有关”

B. 99.5%以上的把握认为“爱好该项运动与性别无关”

C. 在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别有关”

D. 在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.

(I)试根据上述数据完成列联表:

(II)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解四川省各景点在大众中的熟知度,随机对岁的人群抽样了人,回答问题四川省有哪几个著名的旅游景点?统计结果如表.

组号

分组

回答正确的人数

回答正确的人数

占本组的频率

1)分别求出的值;

2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组各抽取多少人?

3)通过直方图求出年龄的众数,平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,平面是线段的中点,.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直角坐标平面内的两点PQ满足条件:①PQ都在函数的图像上;②PQ关于原点对称,则称PQ是函数的一对友好点对(点对PQQP看作同一对友好点对.已知函数若此函数的友好点对有且只有一对,则a的取值范围是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生从全校学生中随机选取名统计他们的鞋码大小,得到如下数据:

鞋码

合计

男生

女生

以各性别各鞋码出现的频率为概率.

)从该校随机挑选一名学生,求他(她)的鞋码为奇数的概率.

)为了解该校学生考试作弊的情况,从该校随机挑选名学生进行抽样调查.每位学生从装有除颜色外无差别的个红球和个白球的口袋中,随机摸出两个球,若同色,则如实回答其鞋码是否为奇数;若不同色,则如实回答是否曾在考试中作弊.这里的回答,是指在纸上写下.若调查人员回收到的小纸条,试估计该校学生在考试中曾有作弊行为的概率.

查看答案和解析>>

同步练习册答案