精英家教网 > 高中数学 > 题目详情
3.已知2$\overrightarrow{a}$+$\overrightarrow{b}$=(5,4),$\overrightarrow{a}$-2$\overrightarrow{b}$=(0,-3),则$\overrightarrow{a}$+$\overrightarrow{b}$的坐标为(3,3).

分析 直接利用已知条件,求出$\overrightarrow{a}$,$\overrightarrow{b}$,然后求解$\overrightarrow{a}$+$\overrightarrow{b}$的坐标.

解答 解:2$\overrightarrow{a}$+$\overrightarrow{b}$=(5,4),$\overrightarrow{a}$-2$\overrightarrow{b}$=(0,-3),
可得4$\overrightarrow{a}$+2$\overrightarrow{b}$=(10,8),∴5$\overrightarrow{a}$=(10,5),可得$\overrightarrow{a}$=(2,1),
$\overrightarrow{a}$-2$\overrightarrow{b}$=(0,-3),
可得-2$\overrightarrow{a}$+4$\overrightarrow{b}$=(0,6),
∴2$\overrightarrow{a}$+$\overrightarrow{b}$-2$\overrightarrow{a}$+4$\overrightarrow{b}$=5$\overrightarrow{b}$=(5,10),$\overrightarrow{b}$=(1,2).
$\overrightarrow{a}$+$\overrightarrow{b}$=(3,3).
故答案为:(3,3).

点评 本题考查斜率的坐标运算,考查函数与方程的思想的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点坐标为(a-$\frac{b}{2}$,0),则椭圆的离心率e=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知M为椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一动点,过M作椭圆的切线为l,过椭圆的右焦点F1作l的垂线,垂足为D,求D点的轨迹方程为x2+y2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=(1+$\frac{1}{tanx}$)sin2x-2sin(x+$\frac{π}{4}$)•sin(x-$\frac{π}{4}$).
(1)若tanα=2,求f(α)的值;
(2)若x∈[$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的取值范围;
(3)画出函数在一个周期内[0,π]的图象(注意定义域);
(4)说出函数在[0,π]内的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点A(m,-4),B(-2,8),C(2,0),且向量$\overrightarrow{AB}$与向量$\overrightarrow{BC}$平行,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanα+$\frac{1}{tanα}$=2,则log2[(sinx+cosα)2-1]的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.-$\frac{1}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=$\frac{sin\frac{5}{2}x}{2sin\frac{x}{2}}$-$\frac{1}{2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.经过双曲线x2-$\frac{{y}^{2}}{3}$=1的右焦点F2作的直线.与双曲线交于A、B两点.|AB|=3.求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某小组有5名学生,其中3名女生、2名男生,现从这个小组中任选2名学生担任正、副组长,则正组长是男生的概率是$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案