精英家教网 > 高中数学 > 题目详情
(0<ϕ<π),函数
(Ⅰ)求ϕ;
(Ⅱ)在给出的直角坐标系中用五点作图法画出函数y=f(x)在区间[0,π]上的图象;
(Ⅲ)根据画出的图象写出函数y=f(x)在[0,π]上的单调区间和最值.

【答案】分析:(Ⅰ)由=sin2xcosϕ+cos2xsinϕ=sin(2x+ϕ)可得,结合0<ϕ<π,可求
(Ⅱ)列表,画出函数的图象
(Ⅲ)结合函数的图象可求函数的单调区间及函数的最值
解答:解:(Ⅰ)∵=sin2xcosϕ+cos2xsinϕ=sin(2x+ϕ)…(2分)
由题可知:,…(3分)
,…(4分)
∵0<ϕ<π,
…(5分)
(Ⅱ)∵f(x)=sin(2x+
列表因为x∈[0,π],所以2x+∈[]
2x+     π
xπ
f(x)1-1
  …(9分)
(Ⅲ)单调增区间:…(10分)
单调减区间:…(11分)
函数的最大值是:1,最小值-1
点评:此题考查了函正弦函数性质的应用,函数单调区间的求解,涉及的知识有:平面向量的数量积运算,两角和与差的正弦函数公式,辅助角公式的应用,以及正弦函数的单调性,其中利用三角函数的恒等变形把函数解析式化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)的单调递增区间;
(2)如果函f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在借助计算器求“方程lgx=2-x的近似解(精确到0.1)”时,设f(x)=lgx+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了x的4个不同值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他又取的x的4个不同值中的前两个值依次为
1.5、1.75
1.5、1.75

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2时,函h(x)=f(x)-g(x),在其定义域是增函数,求b的取值范围;
(2)在(1)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(3)当a=-2,b=4时,求证2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=e2+ax,g(x)=exlnx
(1)设曲线y=f(x)在x=1处得切线与直x+(e-1)y=1垂直,求a的值.
(2)若对任意实x≥0f(x)>0恒成立,确定实数a的取值范围.
(3)a=1时,是否存x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处得切线与y轴垂直?若存在求x0的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案