精英家教网 > 高中数学 > 题目详情
16.一只蚂蚁在边长分别为6cm、8cm、10cm的三角形的边上爬行,该蚂蚁距离三角形的某个顶点的距离不超过1cm的概率为$\frac{1}{4}$.

分析 本题考查的知识点是几何概型的意义,关键是要找出蚂蚁距离三角形的三个顶点的距离不超过1时对应线段的长度,并将它同三角形的周长代入几何概型的计算公式,进行求解.

解答 解:如下图所示,当蚂蚁位于图中蓝色线段上时,距离三角形的三个顶点的距离不超过1,
由已知易得:蓝色线段的长度和为:6
三角形的周长为:6+8+10=24,
故P=$\frac{6}{24}$=$\frac{1}{4}$
故答案为:$\frac{1}{4}$

点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=$\frac{N(A)}{N}$求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求复合函数值域.
(1)f(x)=4x-2x+1
(2)f(x)=9x-3x+3+20
(3)y=x-4$\sqrt{x}$+6(1≤x≤25)
(4)y=$\frac{1}{{x}^{2}}$-$\frac{4}{x}$+6($\frac{1}{5}$≤x≤2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A(2,0),B为抛物线y2=x上的一点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合M={x|x+1≥0},N={x|-2<x<2},则M∩N=[-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD为正三角形,底面ABCD为边长为2的正方形,点E为棱PB的中点,则点P到平面ACE的距离为(  )
A.$\frac{\sqrt{7}}{7}$B.$\frac{\sqrt{21}}{7}$C.$\frac{\sqrt{35}}{7}$D.$\frac{2\sqrt{21}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了宣传2015年10月在贵阳举行的“世界众筹大会”,“世界众筹大会”筹委会举办了“大众创业、万众创新”知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如图所示:
组号 分组回答正确的人数 回答正确的人数占本组的频率  频率分布直方图
 第1组[15,25) 5 0.5 
 第2组[25,35) a 0.9
 第3组[35,45) 27 x
 第4组[45,55) 9 0.36
 第5组[55,65] 3 0.2
(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“世界众筹大会”筹委会决定给所抽取的6人颁发幸运奖,各组抽取的人数分别是多少?
(3)请根据频率分布直方图,估计样本数据的众数和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a<b,c≥d,m=a-c,n=b-d,则m<n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若点A(2,-4),点B(-2,-5),则向量$\overrightarrow{AB}$的坐标为(  )
A.(-4,-1)B.(4,1)C.(0,-9)D.(-2,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}$,且$\overrightarrow{AC}=\overrightarrow a$,$\overrightarrow{BD}=\overrightarrow b$,则$\overrightarrow{AB}$=(  )
A.$\frac{1}{2}(\overrightarrow a-\overrightarrow b)$B.$\frac{1}{2}(\overrightarrow a+\overrightarrow b)$C.$\frac{1}{2}(\overrightarrow b-\overrightarrow a)$D.$\frac{1}{2}\overrightarrow a-\overrightarrow b$

查看答案和解析>>

同步练习册答案