精英家教网 > 高中数学 > 题目详情
11.设函数y=3x与y=2-x的图象交点为(x0,y0),则x0所在的区间是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(1,2)D.(2,3)

分析 作函数y=3x与y=2-x的图象,从而确定x0所在的区间是(0,1),再令x=$\frac{1}{2}$即可.

解答 解:作函数y=3x与y=2-x的图象如下,

由图象可知,
函数y=3x与y=2-x的图象的交点在(0,1)之间;
故x0所在的区间是(0,1);
又∵y=${3}^{\frac{1}{2}}$=$\sqrt{3}$,y=2-$\frac{1}{2}$=$\frac{3}{2}$,
∴$\sqrt{3}$>$\frac{3}{2}$;
故x0所在的区间是(0,$\frac{1}{2}$);
故选A.

点评 本题考查了数形结合的思想应用及恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设函数$y=3sin(ωx+φ)(ω>0,φ∈(-\frac{π}{2},\frac{π}{2}))$的最小正周期为$\frac{π}{2}$,且其图象关于直线$x=\frac{π}{12}$对称,则下列四个结论中正确的编号为②③(把你认为正确的结论编号都填上);   
①图象关于直线$x=-\frac{π}{8}$对称; ②图象关于点$(\frac{5π}{24},0)$对称;③在$[\frac{π}{6},\frac{π}{3}]$上是减函数; ④在$[-\frac{π}{3},0]$上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$(3\frac{3}{8})^{-\frac{2}{3}}-(5\frac{4}{9})^{0.5}+$$(0.008)^{-\frac{2}{3}}×(0.02)^{\frac{1}{2}}$×$(0.32)^{\frac{1}{2}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额),如下表:
年份20102011201220132014
储蓄存款y(千亿元)567810
(1)求y关于x的回归方程 $\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)用所求的回归方程预测该地区2015年的人民币储蓄存款.
注:$\left\{\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ a=\overline y-b\overline x\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一个几何体的三视图如图所示,则这个几何体的表面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x(x>0)}\\{0(x=0)}\\{{x}^{2}+mx(x<0)}\end{array}\right.$为奇函数.
(1)求f(-1)以及m的值;
(2)在给出的直角坐标系中画出y=f(x)的图象,并写出单调区间;
(3)就k的取值范围,讨论函数g(x)=f(x)-2k+1的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.历届现代奥运会召开时间表如下,则n的值为(  )
年份1896年1900年1904年2016年
届数123n
A.28B.29C.30D.31

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.以下命题正确的是①②.
①幂函数的图象都经过(1,1)
②幂函数的图象不可能出现在第四象限
③当n=0时,函数y=xn的图象是一条直线
④若y=xn(n<0)是奇函数,则y=xn在定义域内为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知全集U={1,2,3,4,5,6},集合A={1,3,5,6},则∁UA等于(  )
A.{1,3,5}B.{2,4,6}C.{2,4}D.{1,3,5,6}

查看答案和解析>>

同步练习册答案