精英家教网 > 高中数学 > 题目详情
18.直线x-y+2=0和椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的交点.

分析 联立直线x-y+2=0和椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1,消去y,可得x的方程,解方程可得x的值,进而得到y的值,即有交点.

解答 解:联立直线x-y+2=0和椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1,
消去y,可得5x2+16x=0,
解得x=0或-$\frac{16}{5}$,
即有x=0,y=2;或x=-$\frac{16}{5}$,y=-$\frac{6}{5}$.
即有交点为(0,2),(-$\frac{16}{5}$,-$\frac{6}{5}$).

点评 本题考查直线和椭圆的交点坐标,注意运用联立直线方程和椭圆方程,消去一个变量,解方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列函数中,与函数y=x相等的函数是(  )
A.y=$\sqrt{{x}^{2}}$B.y=$\root{3}{|x{|}^{3}}$
C.y=lnexD.y=a${\;}^{lo{g}_{a}x}$(a>0且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且满足2Sn+an=1;递增的等差数列{bn}满足b1=1,b3=b${\;}_{2}^{2}$-4.
(1)求数列{an},{bn}的通项公式;
(2)若cn是an,bn的等比中项,求数列{c${\;}_{n}^{2}$}的前n项和Tn
(3)若c${\;}_{n}^{2}$≤$\frac{1}{3}$t2+2t-2对一切正整数n恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,△ABC及其内部的点组成的集合记为D,P(x,y)为D中任意一点,则z=x-4y的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)为二次函数,且满足f(0)=1,f(x+1)-f(x-1)=4x.
(1)求f(2);
(2)求f(x)的解析式;
(3)判断f(x)的奇偶性并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.观察下列等式:
32+43=52
102+112+122=132+142
212+222+232+242=252+262+272
362+372+382+392+402=412+422+432+442

由此得到第n(n∈N+)个等式为(2n2+2n+1)2+(2n2+2n+2)2+…+(2n2+3n)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知cosα=$\frac{1}{3}$,α∈(-$\frac{π}{2}$,0).
(1)求cos($\frac{π}{3}$-α)和sin($\frac{π}{6}$+α)的值;
(2)如果钝角β的终边过点P(-2$\sqrt{2}$,1),求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.动点P到点(1,0)的距离与到直线x=3的距离之比为$\frac{1}{2}$,则求P点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,设函数f(x)=$\frac{{2015}^{x+1}+2014}{{2015}^{x}+1}$(x∈[-a,a])的最大值为M,最小值为N,那么M+N=(  )
A.2008B.2009C.4028D.4029

查看答案和解析>>

同步练习册答案