精英家教网 > 高中数学 > 题目详情
3.已知直线l1、经过点A(a,a),B(1,0),直线l2经过点C(2a,1),D(-3,a),是否存在实数a,使l1∥l2?若存在,求出a的值;若不存在,请说明理由.

分析 根据直线平行则斜率相等,分类讨论即可.

解答 解:当a=1时,直线l1的斜率不存在,直线l2的斜率$\frac{1-1}{-3-2}$=0,此时l1不平行l2
当a=-$\frac{3}{2}$时,直线l2的斜率不存在,直线l1的斜率存在,此时l1不平行l2
当a≠1且a≠-$\frac{3}{2}$时,
直线l1的斜率为$\frac{-a}{1-a}$,直线l2的斜率$\frac{a-1}{-3-2a}$,
由l1∥l2
则$\frac{-a}{1-a}$=$\frac{a-1}{-3-2a}$,
即为3a2+a+1=0,
由于△=1-12<0,
故3a2+a+1=0无解,
故不存在实数a,使l1∥l2

点评 本题考查了直线的斜率和平行的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=b•ax(a>0,a≠1,b∈R)的图象经过点A(1,$\frac{1}{2}$),B(3,2)
(1)试确定f(x)的解析式;
(2)记集合E={y|y=bx-($\frac{1}{a}$)x+1,x∈[-3,2]},λ=($\frac{1}{10}$)0+${8^{-\frac{2}{3}}}$+$\root{3}{{{{(-\frac{3}{4})}^3}}}$,判断λ与E的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知奇函数f(x)对任意x∈R都有f(x+2)=-f(x),当x∈(0,1]时,f(x)=2x,则f(2016)-f(2015)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知扇形的圆心角为$\frac{2}{3}π$,半径为5,则扇形的弧长l等于$\frac{10π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x+2)为偶函数,且函数y=f(x)关于点(1,0)中心对称,当x∈(0,1)时,f(x)=2x-1,则f(log224)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a,b,c为正实数,给出以下结论:
①若a-2b+3c=0,则$\frac{{b}^{2}}{ac}$的最小值是3;
②若a+2b+2ab=8,则a+2b的最小值是4;
③若a(a+b+c)+bc=4,则2a+b+c的最小是2$\sqrt{3}$;
④若a2+b2+c2=4,则ab+bc的最大值是2$\sqrt{2}$.
其中正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn满足Sn=n2(n∈N*).
(1)求数列{an}通项公式;
(2)求数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$\overrightarrow a$=(1,-2),$\overrightarrow b$=(3,4),若$\overrightarrow a$与$\overrightarrow a$+λ$\overrightarrow b$夹角为锐角,则实数λ的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其中$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow{b}$=(cosx,1),x∈R
(Ⅰ)求函数y=f(x)的单调递减区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=-1,a=$\sqrt{7}$,且向量$\overrightarrow{m}$=(3,sinB)与向量$\overrightarrow{n}$=(2,sinC)共线,求△ABC的面积.

查看答案和解析>>

同步练习册答案