【题目】如图,正方形与梯形所在的平面互相垂直, ,,点在线段上.
(Ⅰ) 若点为的中点,求证:平面;
(Ⅱ) 求证:平面平面;
(Ⅲ) 当平面与平面所成二面角的余弦值为时,求的长.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
(1)建立空间直角坐标系,利用空间向量的结论可证得BM⊥平面ADEF的法向量,从而可证得线面平行;
(2)分别求得平面,平面的法向量,由法向量的数量积为0可证得面面垂直;
(3)设,由题意可得点M的坐标,分别求得两个半平面的法向量,由二面角的余弦值得到关于的方程,解方程求得的值即可确定的长.
(1)∵正方形ADEF与梯形ABCD所在的平面互相垂直,AD为交线,
∴ED⊥平面ABCD,由已知得DA,DE,DC两两垂直,
如图建系D-xyz,可得D(0,0,0),A(1,0,0),B(1,1,0),C(0,2,0),E(0,0,1),F(1,0,1).
由M为C的中点,知,故.
易知平面ADEF的法向量为,
,
∵BM平面ADEF,∴BM//平面ADEF.
(2)由(1)知,
设平面BDE的法向量为,
平面BEC的法向量为,
由得,
由得,
,故平面BDE⊥平面BEC.
(3)设,设,计算可得,
则,
设平面BDM的法向量为,
由得,
易知平面ABF的法向量为,
由已知得 ,
解得,此时,
,则,即AM的长为.
科目:高中数学 来源: 题型:
【题目】我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为,高皆为的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面上,用平行于平面且与平面任意距离处的平面截这两个几何体,可横截得到及两截面.可以证明总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】郴州市某中学从甲乙两个教师所教班级的学生中随机抽取100人,每人分别对两个教师进行评分,满分均为100分,整理评分数据,将分数以10为组距分成6组:,,,,,.得到甲教师的频率分布直方图,和乙教师的频数分布表:
乙教师分数频数分布表 | |
分数区间 | 频数 |
3 | |
3 | |
15 | |
19 | |
35 | |
25 |
(1)在抽样的100人中,求对甲教师的评分低于70分的人数;
(2)从对乙教师的评分在范围内的人中随机选出2人,求2人评分均在范围内的概率;
(3)如果该校以学生对老师评分的中位数是否大于80分作为衡量一个教师是否可评为该年度该校优秀教师的标准,则甲、乙两个教师中哪一个可评为年度该校优秀教师?(精确到0.1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为发挥体育在核心素养时代的独特育人价值,越来越多的中学已将某些体育项目纳入到学生的必修课程,甚至关系到是否能拿到毕业证.某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究性学习小组随机从该校高一年级学生中抽取了100人进行调查,其中男生60人,且抽取的男生中对游泳有兴趣的占,而抽取的女生中有15人表示对游泳没有兴趣.
(1)试完成下面的列联表,并判断能否有的把握认为“对游泳是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男生 | |||
女生 | |||
合计 |
(2)已知在被抽取的女生中有6名高一(1)班的学生,其中3名对游泳有兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳有兴趣的概率.
(3)该研究性学习小组在调查中发现,对游泳有兴趣的学生中有部分曾在市级和市级以上游泳比赛中获奖,如下表所示.若从高一(8)班和高一(9)班获奖学生中各随机选取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.
班级 | |||||||||||
市级比赛 获奖人数 | 2 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | 2 | |
市级以上比赛获奖人数 | 2 | 2 | 1 | 0 | 2 | 3 | 3 | 2 | 1 | 2 |
0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出:坚决打赢脱贫攻坚战,做到精准扶贫,某帮扶单位为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助贫困村种植脐橙,并利用互联网电商进行销售,为了提高销量,现从该村的脐橙树上随机摘下100个脐橙进行测重,其质量(单位克)分布在区间[200,500内,由统计的质量数据作出频率分布直方图如图所示.
(1)按分层抽样的方法从质量在,的脐橙中随机抽取5个,再从这5个脐橙中随机抽取2个,求这2个脐橙质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代替这组数据的平均值,以频率代替概率,已知该村的脐橙种植地上大约还有100000个脐橙待出售,某电商提出两种收购方案:
A.所有脐橙均以7元/千克收购;
B.低于350克的脐橙以2元/个收购,其余的以3元/个收购.
请你通过计算为该村选择收益较好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右顶点分别为,,左、右焦点分别为,,离心率为,点,为线段的中点.
()求椭圆的方程.
()若过点且斜率不为的直线与椭圆交于、两点,已知直线与相交于点,试判断点是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com