精英家教网 > 高中数学 > 题目详情
如图所示的长方体ABCD-A1B1C1D1中AB=BB1且BC=2AB,E,F分别是BC1,A1D1的中点,则异面直线BE与DF所成的角是
90°
90°
分析:通过建立空间直角坐标系,利用异面直线的方向向量的夹角即可得到异面直线所成的角.
解答:解:如图所示,建立空间直角坐标系.
不妨设AB=BB1=1,则BC=2,D(0,0,0),B(2,1,0),F(1,0,1),E(1,1,1).
DF
=(1,0,1),
BE
=(-1,0,1).
cos<
DF
BE
=
DF
BE
|
DF
| |
BE
|
=0,∴
DF
BE
,∴DF⊥BE.
∴异面直线BE与DF所成的角是90°.
故答案为90°.
点评:熟练掌握通过建立空间直角坐标系,利用异面直线的方向向量的夹角得到异面直线所成的角的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD-EFGH材料切割成三棱锥H-ACF.

(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;
(Ⅱ)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.
(i) 甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H-ACF的高.请你根据甲工程师的思路,求该三棱锥的高.
(ii)乙工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t的值是多少?(请直接写出t的值,不要求写出演算或推证的过程).

查看答案和解析>>

科目:高中数学 来源:2013届江苏省淮安七校高二上学期期中考试理科数学 题型:填空题

如图所示的长方体中,AB=AD==,则二面角的大小为_______;

 

 

 

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高一上学期第二次月考数学试卷 题型:填空题

如图所示的长方体中,AB=AD==,二面角的大小为    ▲  

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省泉州市高三第二次质量检测数学试卷(理科)(解析版) 题型:解答题

某工厂欲加工一件艺术品,需要用到三棱锥形状的坯材,工人将如图所示的长方体ABCD-EFGH材料切割成三棱锥H-ACF.

(Ⅰ)若点M,N,K分别是棱HA,HC,HF的中点,点G是NK上的任意一点,求证:MG∥平面ACF;
(Ⅱ)已知原长方体材料中,AB=2m,AD=3m,DH=1m,根据艺术品加工需要,工程师必须求出该三棱锥的高.
(i) 甲工程师先求出AH所在直线与平面ACF所成的角θ,再根据公式h=AH•sinθ求出三棱锥H-ACF的高.请你根据甲工程师的思路,求该三棱锥的高.
(ii)乙工程师设计了一个求三棱锥的高度的程序,其框图如图所示,则运行该程序时乙工程师应输入的t的值是多少?(请直接写出t的值,不要求写出演算或推证的过程).

查看答案和解析>>

同步练习册答案