精英家教网 > 高中数学 > 题目详情
4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为$\frac{4}{3}$π,过椭圆C的右焦点作斜率为k(k≠0)的直线l与椭圆C相交于A、B两点,线段AB的中点为P.
(1)求椭圆C的标准方程;
(2)过点P垂直于AB的直线与x轴交于点D,且|DP|=$\frac{3\sqrt{2}}{7}$,求k的值.

分析 (1)根据题意,在三角形中由勾股定理列出等式,根据已知的焦距大小,即可求得椭圆方程;
(2)先设直线方程y=k(x-1),联立椭圆方程求得P点坐标,根据已知条件求出直线PD的方程,从而求得D点坐标,又|DP|=$\frac{3\sqrt{2}}{7}$,根据两点间的距离公式,即可求得k的值.

解答 解:(1)过短轴的一个端点与两个焦点的圆的半径为$\frac{2\sqrt{3}}{3}$,设右焦点的坐标为(c,0),
依题意知,2c=2,即c=1,$\left\{\begin{array}{l}{{a}^{2}={b}^{2}+1}\\{(b-\frac{2\sqrt{3}}{3})^{2}+1=\frac{4}{3}}\end{array}\right.$,又b>1,
解得:a=2,b=$\sqrt{3}$,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)设过椭圆C的右焦点的直线l的方程为y=k(x-1),(k≠0),
设A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(4k2+3)x2-8k2x+4k2-12=0,
由韦达定理得x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
y1+y2=k(x1+x2)-2k=-$\frac{6k}{3+4{k}^{2}}$,
∵P为线段AB的中点,则可得点P($\frac{4{k}^{2}}{3+4{k}^{2}}$,-$\frac{3k}{3+4{k}^{2}}$),
又直线PD的斜率为-$\frac{1}{k}$,直线PD的方程为y+$\frac{3k}{3+4{k}^{2}}$=-$\frac{1}{k}$(x-$\frac{4{k}^{2}}{3+4{k}^{2}}$),
令y=0得,x=$\frac{{k}^{2}}{3+4{k}^{2}}$,
又∵点D($\frac{{k}^{2}}{3+4{k}^{2}}$,0),
∴丨PD丨=$\sqrt{(\frac{{k}^{2}}{3+4{k}^{2}}-\frac{4{k}^{2}}{3+4{k}^{2}})^{2}+(-\frac{3k}{3+4{k}^{2}})^{2}}$=$\frac{3\sqrt{{k}^{4}+{k}^{2}}}{3+4{k}^{2}}$=$\frac{3\sqrt{2}}{7}$,
化简得17k4+k2-18=0,解得:k2=1,故k=1或k=-1,
k的值±1.

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,韦达定理,中点坐标公式及两点之间的距离公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.数列{an}的前n项和为Sn
(1)当{an}是等比数列,a1=1,且$\frac{1}{a_1}$,$\frac{1}{a_3}$,$\frac{1}{a_4}$-1是等差数列时,求an
(2)若{an}是等差数列,且S1+a2=7,S2+a3=15,证明:对于任意n∈N*,都有:$\frac{1}{{{S_1}+1}}+\frac{1}{{{S_2}+2}}+\frac{1}{{{S_3}+3}}+…+\frac{1}{{{S_n}+n}}<\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(-$\frac{π}{6}$)的值为(  )
A.-1B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=\frac{1}{{\sqrt{{x^2}+2}}}+\sqrt{{x^2}+2}$的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为$\frac{9}{4}$,底面是边长为$\sqrt{3}$的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为(  )
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在x轴上,记△BCF的面积为S1,△ACF的面积为S2,则$\frac{{S}_{1}^{2}}{{S}_{2}^{2}}$等于是(  )
A.$\frac{{|{BF}|-1}}{{|{AF}|-1}}$B.$\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$C.$\frac{{|{BF}|+1}}{{|{AF}|+1}}$D.$\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,若$asinBcosC+csinBcosA=\frac{1}{2}b$,且a>b,
(1)求角B的大小;
(2)若$b=\sqrt{13},a+c=4$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个判断:?
①某校高三(1)班的人数和高三(2)班的人数分别是m和n,某次数学测试平均分分别是a,b,则这两个班的数学平均分为$\frac{a+b}{2}$;?
②从总体中抽取的样本(1,2.5),(2,3.1),(4,3.9),(5,4.4),则回归直线y=bx+a必过点(3,3.6);
③在频率分布直方图中,众数左边和右边的所有直方图的面积相等.
其中正确的个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知菱形ABCD的边长为4,∠ABC=120°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率(  )
A.$\frac{π}{4}$B.1-$\frac{π}{4}$C.$\frac{{\sqrt{3}π}}{24}$D.$1-\frac{{\sqrt{3}π}}{24}$

查看答案和解析>>

同步练习册答案