精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={1234}和集合B={123n},其中n≥5.从集合A中任取三个不同的元素,其中最小的元素用S表示;从集合B中任取三个不同的元素,其中最大的元素用T表示.记XTS.

(1)当n5时,求随机变量X的概率分布和数学期望

(2)求

【答案】1)概率分布见解析,2

【解析】

1)当时,分别考虑的取值情况,再分析的概率分布;

2)考虑的可能组成情况,对每一种情况进行概率计算然后概率结果相加得到.

解:(1)当n=5时,B={12345}

由题意可知,A=12T=345

X=T-S=1234.

则随机变量X的概率分布为

随机变量X的数学期望.

(2)因为X=T-S=n-3,所以S=1T=n-2S=2T=n-1

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率等于.

(1)求椭圆的方程;

(2)过椭圆的右焦点作直线交椭圆两点,交轴于点,若,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,点分别为的中点.

1)求证:平面平面EFD

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程与直线的极坐标方程;

(2)若射线与曲线交于点(不同于原点),与直线交于点,直线与极轴所在直线交于点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三梭柱ABCA1B1C1中,ACBCEF分别为ABA1B1的中点.

1)求证:AF∥平面B1CE

2)若A1B1,求证:平面B1CE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,右表是对 100 辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.

(Ⅰ)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;

(Ⅱ)用分层抽样的方法从行车里程在区间[38,40)与[40,42)的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[40,42)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式m-|x-2|≥1,其解集为[0,4].

(1)m的值;

(2)ab均为正实数,且满足abm,求a2b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.

(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;

(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知△的内角的对边分别为,其中,且,延长线段到点,使得.

1)求证:是直角;

2)求的值.

查看答案和解析>>

同步练习册答案