已知正项数列在抛物线上;数列中,点在过点(0,1),以为斜率的直线上。
(1)求数列的通项公式;
(2)若成立,若存在,求出k值;若不存在,请说明理由;
(3)对任意正整数,不等式恒成立,求正数的取值范围。
科目:高中数学 来源: 题型:解答题
已知数列中,,前和
(Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定常数,定义函数,数列满足.
(1)若,求及;
(2)求证:对任意,;
(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知=2,点()在函数的图像上,其中=.
( 1 ) 证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对数列,规定为数列的一阶差分数列,其中, 对自然数,规定为的阶差分数列,其中.
(1)已知数列的通项公式,试判断,是否为等差或等比数列,为什么?
(2)若数列首项,且满足,求数列的通项公式。
(3)对(2)中数列,是否存在等差数列,使得对一切自然都成立?若存在,求数列的通项公式;若不存在,则请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律。下图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14个数与第15个数的比为,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35。显然,1+3+6+10+15=35。事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数。试用含有m、k的数学公式表示上述结论,并给予证明。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com