【题目】在三棱柱中, , , , , 。
(1)设,异面直线与所成角的余弦值为,求的值;
(2)若是的中点,求平面和平面所成二面角的余弦值。
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=pe﹣x+x+1(p∈R). (Ⅰ)当实数p=e时,求曲线y=f(x)在点x=1处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当p=1时,若直线y=mx+1与曲线y=f(x)没有公共点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,若椭圆与圆相交于两点,且圆在椭圆内的弧长为.
(1)求的值;
(2)过椭圆的中心作两条直线交椭圆于和四点,设直线的斜率为, 的斜率为,且.
①求直线的斜率;
②求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.
(1)求f(x)的单调区间;
(2)若f(x)存在极值点x0 , 且f(x1)=f(x0),其中x1≠x0 , 求证:x1+2x0=0;
(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
(1)求f(x)的单调区间;
(2)若f(x)存在极点x0 , 且f(x1)=f(x0),其中x1≠x0 , 求证:x1+2x0=3;
(3)设a>0,函数g(x)=∣f(x)∣,求证:g(x)在区间[0,2]上的最大值不小于
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点,
(1)若,求曲线的方程;
(2)如图,作直线平行于曲线的渐近线,交曲线于点,
求证:弦的中点必在曲线的另一条渐近线上;
(3)对于(1)中的曲线,若直线过点交曲线于点,求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com