精英家教网 > 高中数学 > 题目详情
异面直线a、b满足,则lab的位置关系一定是
A.lab都相交B.l至少与ab中的一条相交
C.l至多与ab中的一条相交D.l至少与ab中的一条平行
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,平面分别为的中点.
(Ⅰ)证明:平面
(Ⅱ)求与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图所示,在直三棱柱中,已知分别为的中点.

(I)证明:平面;(II)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分14分)

如图,已知三棱锥P—ABC中,PA⊥平面ABC,设AB、PB、PC的中点分别为D、E、F,
若过D、E、F的平面与AC交于点G.
(Ⅰ)求证点G是线段AC的中点;
(Ⅱ)判断四边形DEFG的形状,并加以证明;
(Ⅲ)若PA=8,AB=8,BC=6,AC=10,求几何体BC-DEFG的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((10分)如图所示,在四棱锥PABCD中,底面为直角梯形,ADBCBAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BCMN分别为PCPB的中点.

(1)求证:PBDM
(2)求BD与平面ADMN所成的角.                          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,设平面,垂足分别为,且.如果增加一个条件就能推出,给出四个条件:① ;②;③内的正投影在同一条直线上 ;④在平面内的正投影所在的直线交于一点. 那么这个条件不可能是
A.①②B.②③
C.③D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)已知四边形ABCD为矩形,PA平面ABCD、M、N、E分别是AB、PC、CD的中点。
(1)求证:MN//平面PAD
(2)当MN平面PCD时,求二面角P-CD-B的大小
                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个不同的平面和两条不重合的直线,下列四个命题:
①若            ②若 
③若     ④若 
其中正确命题的个数是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四面体ABCD中,DA⊥面ABC,∠ABC=90°,AE⊥CD,AF⊥DB.求证:
(1)EF⊥DC; (2)平面DBC⊥平面AEF; (3)若AD=AB=a,AC=求二面角B-DC-A的正弦值。

查看答案和解析>>

同步练习册答案