精英家教网 > 高中数学 > 题目详情

过椭圆Γ=1(ab>0)右焦点F2的直线交椭圆于AB两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.
(1)求椭圆Γ的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点PQ,且?若存在,求出该圆的方程;若不存在,请说明理由.

(1)y2=1(2)存在圆心在原点的圆x2y2满足条件

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

平面内与两定点)连线的斜率之积等于非零常数m的点的轨迹,加上两点所成的曲线C可以是圆、椭圆或双曲线.求曲线C的方程,并讨论C的形状与m值得关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知线段AB的两个端点A,B分别在x轴、y轴上滑动,|AB|=3,点M满足2=.
(1)求动点M的轨迹E的方程.
(2)若曲线E的所有弦都不能被直线l:y=k(x-1)垂直平分,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,且过点直线与椭圆M交于A、C两点,直线与椭圆M交于B、D两点,四边形ABCD是平行四边形
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率.

(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),椭圆的右顶点为,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AHFC是平行四边形,线段AF和AC的延长线分别交抛物线于点B和点D.

(1)证明:∠BAD=∠EAD;
(2)求△ABD面积的最小值,并写出此时A点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动点到定点与到定直线,的距离之比为
(1)求的轨迹方程;
(2)过点的直线(与x轴不重合)与(1)中轨迹交于两点.探究是否存在一定点E(t,0),使得x轴上的任意一点(异于点E、F)到直线EM、EN的距离相等?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量共线?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆Cy2=1,AB是四条直线x=±2,y=±1所围成的两个顶点.
 
(1)设P是椭圆C上任意一点,若mn,求证:动点Q(mn)在定圆上运动,并求出定圆的方程;
(2)若MN是椭圆C上两上动点,且直线OMON的斜率之积等于直线OAOB的斜率之积,试探求△OMN的面积是否为定值,说明理由.

查看答案和解析>>

同步练习册答案