【题目】已知函数的最小正周期为,将的图像向右平移个单位长度后得到函数,的图像关于轴对称,且.
(1)求函数的解析式;
(2)设函数,若函数的图像在上恰有2个最高点,求实数的取值范围.
【答案】(1);(2)
【解析】
(1)根据给出的周期,可求出ω的值;由f(x)的图象向右平移个单位长度,函数的图象关于y轴对称,求出φ的值;由,得A的值即可;
(2)由(1)可得F(x)的解析式,由辅助角公式进行化简,利用函数图象分析即可得出结果.
(1)∵函数的最小正周期为π,
∴π,解得ω=2,
∵g(x)=f(x)=Acos[2(x)+φ]=Acos(2xφ),且g(x)的图象关于y轴对称,
∴φ=kπ,k∈Z,即φ=kπ,k∈Z,
∴由|φ|,可得φ,可得f(x)=Acos(2x),
∵,即f()=Acos[2×()]=Acos0=A=2,
∴函数f(x)的解析式为.
(2)由(1)知g(x)=2cos2x;
F(x)=2cos(2x)+2cos2x=2(cos2xcossin2xsin)+2cos2x=3cos2xsin2x,
=2cos(2x);
∵x∈[0,aπ](a>0);
∴2x∈[,2aπ];
∵函数F(x)的图象在x∈[0,aπ](a>0)上恰有2个最高点;
∴结合余弦函数的图象(如图示)知,4π≤2πa6π;
故解得a∈
故实数a的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知椭圆,是它的上顶点,点各不相同且均在椭圆上.
(1)若恰为椭圆长轴的两个端点,求的面积;
(2)若,求证:直线过一定点;
(3)若,的外接圆半径为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张军自主创业,在网上经营一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120元/千克、80元/千克、70元/千克、40元千克,为增加销量,张军对这四种干果进行促销:一次购买干果的总价达到150元,顾客就少付x(2x∈Z)元.每笔订单顾客网上支付成功后,张军会得到支付款的80%.
①若顾客一次购买松子和腰果各1千克,需要支付180元,则x=________;
②在促销活动中,为保证张军每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:已知某公园的四处景观分别位于等腰梯形的四个顶点处,其中,两地的距离为千米,,两地的距离为千米,.现拟规划在(不包括端点)路段上增加一个景观,并建造观光路直接通往处,造价为每千米万元,又重新装饰路段,造价为每千米万元.
(1)若拟修建观光路路段长为千米,求路段的造价;
(2)设,当为何值时,,段的总造价最低.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:
①若,,则,为异面直线; ②若,,,则;
③若,,则; ④若,,,则.
则上述命题中真命题的序号为( )
A.①②B.③④C.②D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 经过椭圆: 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆于, 两点,且().
(1)求椭圆的方程;
(2)当三角形的面积取得最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左,右焦点分别为,,点为椭圆上任意一点,点关于原点的对称点为点,有,且当的面积最大时为等边三角形.
(1)求椭圆的标准方程;
(2)与圆相切的直线:交椭圆于,两点,若椭圆上存在点满足,求四边形面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com