精英家教网 > 高中数学 > 题目详情
14.设定义在R上的函数f(x)满足以下条件:
(1)f(x)+f(-x)=0;
(2)f(x+1)=f(x-1);   
(3)当0≤x≤1时,f(x)=2x-1,
则$f(\frac{1}{2})+f(\frac{3}{2})+f(1)+f(2)+f(4)+f(\frac{9}{2})$=$\sqrt{2}$.

分析 可知f(x)是周期为2的奇函数,从而可得f($\frac{1}{2}$)+f(-$\frac{1}{2}$)=0,f(0)=f(0)=0,从而解得.

解答 解:由题意知,
f(x)是周期为2的奇函数,
故$f(\frac{1}{2})+f(\frac{3}{2})+f(1)+f(2)+f(4)+f(\frac{9}{2})$
=f($\frac{1}{2}$)+f(-$\frac{1}{2}$)+f(1)+f(0)+f(0)+f($\frac{1}{2}$)
=f(1)+f($\frac{1}{2}$)
=2-1+$\sqrt{2}$-1=$\sqrt{2}$;
故答案为:$\sqrt{2}$.

点评 本题考查了函数的性质的判断与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知$f(x)=\left\{{\begin{array}{l}{{x^2}-4,x>0}\\{0,x=0}\\{1-x,x<0}\end{array}}\right.$.
(1)求f(f(-1)),f(f(1));   
(2)画出f(x)的图象;
(3)若f(x)=a,问a为何值时,方程没有根?有一个根?两个根?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在平行四边形ABCD中,∠ABD=90°,2AB2+BD2=4,若将其沿BD折成直二面角A-BD-C,则三棱锥A-BCD的外接球的表面积为(  )
A.B.C.12πD.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y=ax2(a>0),过点P(0,1)的直线l交抛物线C于A、B两点.
(Ⅰ)若抛物线C的焦点为(0,$\frac{1}{4}$),求该抛物线的方程;
(Ⅱ)已知过点A、B分别作抛物线C的切线l1、l2,交于点M,以线段AB为直径的圆经过点M,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$f(x)=a•{log_2}({\sqrt{{x^2}+1}+x})+\frac{{b•\sqrt{4-{x^2}}}}{{|{x+3}|-3}}+e$(a,b为常数,e为自然对数的底),且f(lg(logπe))=π,则f(lg(lnπ))=2e-π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?a∈R,a2≥0”的否定为(  )
A.?a∈R,a2<0B.?a∈R,a2≥0C.?a∉R,a2≥0D.?a∈R,a2<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等比数列{an}的前n项和为Sn,且${S_n}={3^n}+k$
(Ⅰ)求k的值及数列{an}的通项公式;
(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列$\{\frac{1}{d_n}\}$的前n项和Tn,并求使$\frac{8}{5}{T_n}+\frac{n}{{5×{3^{n-1}}}}≤\frac{40}{27}$成立的正整数n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数y=f (x)的定义域为D,如果存在非零常数T,对于任意 x∈D,都有f(x+T)=T•f (x),则称函数y=f(x)是“似周期函数”,非零常数T为函数y=f( x)的“似周期”.现有下面四个关于“似周期函数”的命题:
①如果“似周期函数”y=f(x)的“似周期”为-1,那么它是周期为2的周期函数;
②函数f(x)=x是“似周期函数”;
③函数f(x)=2x是“似周期函数”;
④如果函数f(x)=cosωx是“似周期函数”,那么“ω=kπ,k∈Z”.
其中是真命题的序号是①④.(写出所有满足条件的命题序号)

查看答案和解析>>

同步练习册答案