精英家教网 > 高中数学 > 题目详情

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
附:K2=
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

【答案】
(1)解:由已知得,抽取的100名学生中,男生60名,女生40名,

分数小于等于110分的学生中,

男生人有60×0.05=3(人),记为A1,A2,A3

女生有40×0.05=2(人),记为B1,B2;…(2分)

从中随机抽取2名学生,所有的可能结果共有10种,它们是:

(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),

(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2);

其中,两名学生恰好为一男一女的可能结果共有6种,它们是:

(A1,B1),(A1,B2),(A2,B1),

(A2,B2),(A3,B1),(A3,B2);

故所求的概率为P= =


(2)解:由频率分布直方图可知,

在抽取的100名学生中,男生 60×0.25=15(人),女生40×0.375=15(人)

据此可得2×2列联表如下:

数学尖子生

非数学尖子生

合计

男生

15

45

60

女生

15

25

40

合计

30

70

100

所以得K2= = ≈1.79;

因为1.79<2.706,

所以没有90%的把握认为“数学尖子生与性别有关”


【解析】(1)根据分层抽样原理计算抽取的男、女生人数,利用列举法计算基本事件数,求出对应的概率值;(2)由频率分布直方图计算对应的数据,填写列联表,计算K2值,对照数表即可得出概率结论.
【考点精析】解答此题的关键在于理解频率分布直方图的相关知识,掌握频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的函数,对任意实数m,n,都有f(m)f(n)=f(m+n),且当x<0时,0<f(x)<1.
(1)证明:①f(0)=1;②当x>0时,f(x)>1;③f(x)是R上的增函数;
(2)设a∈R,试解关于x的不等式f(x2﹣3ax+1)f(﹣3x+6a+1)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e为自然对数的底数)

(Ⅰ)当a=1时,求f(x)的单调区间;

(Ⅱ)若函数f(x)在 上无零点,求a的最小值;

(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此时的x值
(2)求f(x)的单调减区间
(3)若x∈[﹣ ]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示.

(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)分别求第3,4,5组的频率.

(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场宣传活动,应从第3,4,5组各抽取多少名志愿者?

(3)在(2)的条件下,我市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:方程x2mx+1=0有两个不相等的负根;q:方程4x2+4(m-2)x+1=0无实根.若pq为真,pq为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,A(a,0),B(0,b),O(0,0),△OAB的面积为4,
(1)求椭圆的标准方程
(2)设直线l:y=kx+1与椭圆C相交于P,Q两点,是否存在这样的实数k,使得以PQ为直径的圆过原点,若存在,请求出k的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是边长为2的等边三角形,
(Ⅰ)求证:平面PAM⊥平面PDM;
(Ⅱ)若点E为PC中点,求二面角P﹣MD﹣E的余弦值.

查看答案和解析>>

同步练习册答案