精英家教网 > 高中数学 > 题目详情

已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0,且直线l与圆C交于A、B两点.
(1)若|AB|=,求直线l的倾斜角;
(2)若点P(1,1)满足2,求此时直线l的方程.

(1).        (2)x-y=0或x+y-2=0.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,已知与⊙O相切,为切点,过点的割线交圆于两点,弦相交于点上一点,且.

(1)求证:
(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,直线,设点
(1)若点在圆外,试判断直线与圆的位置关系;
(2)若点在圆上,且,过点作直线分别交圆两点,且直线的斜率互为相反数;
① 若直线过点,求的值;
② 试问:不论直线的斜率怎样变化,直线的斜率是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线经过点
(1)求以线段为直径的圆的方程;
(2)若直线与圆相交于两点,且为等腰直角三角形,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,圆:,过点的动直线与圆交于两点,线段的中点为为坐标原点.
(1)求的轨迹方程;
(2)当时,求的方程及的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆C0(a>b>0,a,b为常数),动圆C1:x2+y2=t12,b<t1<a.点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点.

(1)求直线AA1与直线A2B交点M的轨迹方程;
(2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t12+t22为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l1、l2分别与抛物线x2=4y相切于点A、B,且A、B两点的横坐标分别为a、b(a、b∈R).
(1)求直线l1、l2的方程;
(2)若l1、l2与x轴分别交于P、Q,且l1、l2交于点R,经过P、Q、R三点作圆C.
①当a=4,b=-2时,求圆C的方程;
②当a,b变化时,圆C是否过定点?若是,求出所有定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知圆的方程为.设该圆过点的最长弦和最短弦分别为ACBD,则四边形ABCD的面积为_________________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知圆O:和点A(1,2),则过A且与圆O相切的直线与两坐标轴围成的三角形的面积等于         

查看答案和解析>>

同步练习册答案