精英家教网 > 高中数学 > 题目详情
5.如图所示,在△ABC中,AB=3$\sqrt{6},B=\frac{π}{4}$,D是BC边上一点,且∠ADB=$\frac{π}{3}$
(Ⅰ)求BD的长;
(Ⅱ)若CD=10,求AC的长及△ADC的面积.

分析 (Ⅰ)在△ABD中,由已知利用正弦定理即可计算得解BD的值.
(Ⅱ)由已知利用正弦定理可求AD的值,在△ACD中,由余弦定理可求AC的值,进而利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(Ⅰ)在△ABD中,由,BD=$\frac{ABsin∠BAD}{sin∠ADB}$=$\frac{3\sqrt{6}sin\frac{7π}{12}}{sin\frac{π}{3}}$,
∴BD=3$\sqrt{3}+3$.  …(4分)
(Ⅱ)AD=$\frac{ABsinB}{sin∠ADB}$=$\frac{3\sqrt{6}sin\frac{π}{4}}{sin\frac{π}{3}}$,
∴AD=6,
在△ACD中,由余弦定理得:AC=$\sqrt{A{D}^{2}+C{D}^{2}-2AD•CD•cos∠ADC}$=14. …(8分)
∴S△ACD=$\frac{1}{2}$AD•DC•sin∠ADC=$\frac{1}{2}×6×10×\frac{\sqrt{3}}{2}$=15$\sqrt{3}$.                      …(12分)

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知复数z=$\frac{(1-i)^{2}+3(1+i)}{2-i}$
(1)若z•(m+2i)为纯虚数,求实数m的值;
(2)若复数z1与z在复平面上所对应的点关于虚轴对称,求z1的实部;
(3)若复数z2=a+bi(a,b∈R),且z2+az+b=1-i,求|z2|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.当$x=\frac{π}{4}$时,函数f(x)=sin(ωx+φ)(A>0)取得最小值,则函数$y=f({\frac{3π}{4}-x})$是(  )
A.奇函数且图象关于点$({\frac{π}{2},0})$对称B.偶函数且图象关于点(π,0)对称
C.奇函数且图象关于直线$x=\frac{π}{2}$对称D.偶函数且图象关于点$({\frac{π}{2},0})$对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知梯形ABCD中,AB∥CD,∠B=$\frac{π}{2}$,DC=2AB=2BC=2$\sqrt{2}$,以直线AD为旋转轴旋转一周的都如图所示的几何体.
(1)求几何体的表面积;
(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示,从一个半径(1+$\sqrt{3}$)m的圆形纸板中切割出一块中间是正方形,四周是四个正三角形的纸板,以此为表面(舍弃阴影部分)折叠成一个正四棱锥,则该四棱锥的体积是(  )m3
A.$\frac{4\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=2cos2x-2asinx+a2-2a+1(0≤x≤$\frac{π}{2}$)的最小值为-2,求实数a的值,并求此时f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y∈R,i是虚数单位.若x+yi与$\frac{3+i}{1+i}$互为共轭复数,则x+y=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1,F2是双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F1的直线l与E的左支交于P,Q两点,若|PF1|=2|F1Q|,且F2Q⊥PQ,则E的离心率是(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{7}}{2}$C.$\frac{\sqrt{15}}{3}$D.$\frac{\sqrt{17}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数$f(x)=\frac{1}{{{{log}_2}({3-x})}}$的定义域为(-∞,2)∪(2,3).

查看答案和解析>>

同步练习册答案