精英家教网 > 高中数学 > 题目详情
对于函数y=f(x),我们把使f(x)=0的实数叫做函数y=f(x)的零点,设x是函数f(x)=x2-|log2x|的一个零点,则x所在的一个区间是( )
A.
B.
C.
D.(1,+∞)
【答案】分析:由零点存在定理知,当在某区间两个端点处的函数值的符号相反,则在此区间必有零点,由此规则对四个选项中的区间端点的函数值的符号进行验证,即可选出正确选项
解答:解:由题意,当x的值分别取,1,函数值分别为-,-,1,
所以可以确定,函数必在内有零点
∴x所在的一个区间是
故选C
点评:本题考查对函数零点判定定理的理解,解题的关键是由零点存在定理得出某个区间是否存在零点的判断方法,零点存在定理是一个充分条件,即两端点处函数值符号相反,可得出函数在此区间内有零点,而当区间中有零点时函数在区间两端点的函数值符号不一定相反.本题考查基本概念,属于数学知识的架构题型,此考点是近几年高考中的常考内容,要注意理解掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,且y=f(x+
π
2
)
为偶函数,对于函数y=f(x)有下列几种描述:
①y=f(x)是周期函数②x=π是它的一条对称轴;③(-π,0)是它图象的一个对称中心;
④当x=
π
2
时,它一定取最大值;其中描述正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;
②函数y=log2x2与函数y=2log2x是相等函数;
③对于指数函数y=2x与幂函数y=x2,总存在x0,当x>x0 时,有2x>x2成立;
④对于函数y=f(x),x∈[a,b],若有f(a)•f(b)<0,则f(x)在(a,b)内有零点.
⑤已知x1是方程x+lgx=5的根,x2是方程x+10x=5的根,则x1+x2=5.
其中正确的序号是
③⑤
③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•和平区一模)函数y=f(x)是定义在[a,b]上的增函数,其中a,b∈R,且0<b<-a,已知y=f(x)无零点,设F(x)=f2(x)+f2(-x),则对于函数y=F(x)有如下四种说法:①定义域是[-b,b];②最小值是0;③是偶函数;④在定义域内单调递增.其中正确的说法是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)对于函数y=f(x)的图象上任意两点A(a,f(a)),B(b,f(b)),设点C分
AB
的比为λ(λ>0).若函数为f(x)=x2(x>0),则直线AB必在曲线AB的上方,且由图象特征可得不等式
a2b2
1+λ
(
a+λb
1+λ
)
2
.若函数为f(x)=log2010x,请分析该函数的图象特征,上述不等式可以得到不等式
log2010a+log2010b
1+λ
log2010
a+λb
1+λ
log2010a+log2010b
1+λ
log2010
a+λb
1+λ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-3,3]上的函数y=f(x)满足f(-x)+f(x)=0,对于函数y=f(x)的图象上任意两点(x1,f(x1)),(x2,f(x2))都有(x1-x2)•[f(x1)-f(x2)]<0.若实数a,b满足f(a2-2a)+f(2b-b2)≤0,则点(a,b)所在区域的面积为(  )
A、8B、4C、2D、1

查看答案和解析>>

同步练习册答案