精英家教网 > 高中数学 > 题目详情
12.过抛物线y2=-4x的焦点,引倾斜角为120°的直线,交抛物线于A、B两点,则△OAB的面积为$\frac{4\sqrt{3}}{3}$.

分析 设A(x1,y1),B(x2,y2),则S=$\frac{1}{2}$|OF|•|y1-y2|.直线为$\sqrt{3}$x+y+$\sqrt{3}$=0,即x=-1-$\frac{\sqrt{3}}{3}$y代入y2=-4x得:y2-$\frac{4\sqrt{3}}{3}$y-4=0,由此能求出△OAB的面积.

解答 解:设A(x1,y1),B(x2,y2),则S=$\frac{1}{2}$|OF|•|y1-y2|.
直线为$\sqrt{3}$x+y+$\sqrt{3}$=0,即x=-1-$\frac{\sqrt{3}}{3}$y代入y2=-4x得:y2-$\frac{4\sqrt{3}}{3}$y-4=0,∴y1+y2=$\frac{4\sqrt{3}}{3}$,y1y2=-4,
∴|y1-y2|=$\sqrt{\frac{48}{9}+16}$=$\frac{8\sqrt{3}}{3}$,
∴S=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}$×1×$\frac{8\sqrt{3}}{3}$=$\frac{4\sqrt{3}}{3}$.
故答案为:$\frac{4\sqrt{3}}{3}$.

点评 本题主要考查了抛物线的简单性质,直线与抛物线的位置关系.在涉及焦点弦的问题时常需要把直线与抛物线方程联立利用韦达定理设而不求,进而利用抛物线的定义求得问题的答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{4}$π$\frac{7π}{4}$$\frac{5π}{2}$$\frac{13π}{4}$
Asin(ωx+φ)030-30
(Ⅰ)请将上表空格中处所缺的数据填写在答题卡的相应位置上,并直接写出函数f(x)的解析式;
(Ⅱ)将y=f(x)图象上所有点的横坐标缩短为原来的$\frac{1}{3}$,再将所得图象向左平移$\frac{π}{4}$个单位,得到y=g(x)的图象,求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,定点A和B都在平面α内,顶点P∉α,PB⊥α,C是α内异于A和B的动点,且PC⊥AC,则BC与AC的位置关系是AC⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.f(x)=2$\sqrt{3}$sin(3ωx+$\frac{π}{3}$)(ω>0)
(1)若f(x+θ)是周期为2π的偶函数.求ω及θ值;
(2)在(1)的条件下求函数f(x)在[-$\frac{π}{2}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆台轴截面的两条对角线互相垂直,上、下地面半径之比为3:4,高为14$\sqrt{2}$,则母线长为(  )
A.10$\sqrt{3}$B.25C.10$\sqrt{2}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.根据条件求抛物线的标准方程.
(1)抛物线的顶点在原点,以坐标轴为对称轴,且焦点在直线x+y+2=0上;
(2)抛物线的顶点在原点,焦点是圆x2十y2-4x=0的圆心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+\frac{3}{4}(x≤0)}\\{lnx+a(x>0)}\end{array}\right.$的图象在A,B两点处的切线重合,则实数a的取值范围为(-∞,ln2+$\frac{11}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A1,A2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴的两个端点,P1,P2是垂直于x轴的直线与此椭圆的两个交点,M为直线A1P1与A2P2的交点,求证:点M的轨迹方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a>0,且a≠1,已知函数f(x)=loga$\frac{1-bx}{x-1}$是奇函数
(Ⅰ)求实数b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当x∈(1,a-2)时,函数f(x)的值域为(1,+∞),求实数a的值.

查看答案和解析>>

同步练习册答案